• High Power Laser and Particle Beams
  • Vol. 32, Issue 3, 032003 (2020)
Xiaofeng Liu1、2、3, Yuan’an Zhao1、3, Liping Peng1、3、4, Xiaoshuang Wang5, Dawei Li1、3, and Jianda Shao1、3
Author Affiliations
  • 1Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China
  • 3Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430070, China
  • show less
    DOI: 10.11884/HPLPB202032.190426 Cite this Article
    Xiaofeng Liu, Yuan’an Zhao, Liping Peng, Xiaoshuang Wang, Dawei Li, Jianda Shao. Application problems of liquid crystal phase modulators to high power lasers[J]. High Power Laser and Particle Beams, 2020, 32(3): 032003 Copy Citation Text show less
    References

    [3] Beeckman J, Neyts K, Vanbrabant P J M. Liquid-crystal photonic applications[J]. Optical Engineering, 50, 081202(2011).

    [4] Cao Z, Mu Q, Hu L. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope[J]. Optics Express, 17, 2530-2537(2009).

    [5] Dayton D, Gonglewski J, Restaino S. Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites[J]. Optics Express, 10, 1508-1519(2002).

    [6] Jacobs S D, Cerqua K A, Marshall K L. Liquid-crystal laser optics-design, fabrication, and performance[J]. Journal of the Optical Society of America B: Optical Physics, 5, 1962-1979(1988).

    [7] Marshall K L, Wei S K H, Vargas M, et al. Liquid crystal beamshaping devices employing patterned photoalignment layers f highpeakpower laser applications[C]Proc of SPIE. 2011: 81140P.

    [8] Heebner J, Bden M, Miller P, et al. Programmable beam spatial shaping system f the National Ignition Facility[C]Proc of SPIE. 2011: 79160H.

    [10] Hayasaki Y, Sugimoto T, Takita A. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 87, 031103(2005).

    [11] Beck R J, Parry J P, MacPherson W N. Application of cooled spatial light modulator for high power nanosecond laser micromachining[J]. Optics Express, 18, 17059-17065(2010).

    [13] He Xiaoxian, Wang Xiangru, Wu Liang. Aperture scalable liquid crystal optically duplicated array of phased array[J]. Optics Communications, 451, 174-180(2019).

    [14] De La Tocnaye J L D. Engineering liquid crystals for optimal uses in optical communication systems[J]. Liquid Crystals, 31, 241-269(2004).

    [15] Buck J, Serati S, Hosting L, et al. Polarization gratings f nonmechanical beam steering applications[C]Proc of SPIE. 2012: 83950F.

    [17] McManamon P F, Dschner T A, Ckum DL, et al. Optical phased array technology[C]Proc of SPIE. 1996, 84(2): 268298.

    [18] DschneR T A. Adaptive photonic phased locked elementsan overview[R]. 2007.

    [19] Davis S R, Farca G, Rommel S D, et al. Analog, nonmechanical beamsteerer with 80 degree field of regard[C]Proc of SPIE. 2008: 69710G.

    [20] Buck J, Serati S, Hosting L, et al. Polarization gratings f nonmechanical beam steering applications[C]Proc of SPIE. 2012: 83950F.

    [21] Serati S, Hoy C L, Hosting L. Large-aperture, wide-angle nonmechanical beam steering using polarization gratings[J]. Optical Engineering, 56, 031211(2017).

    [22] Wang Ling. Self-activating liquid crystal devices for smart laser protection[J]. Liquid Crystals, 43, 2062-2078(2016).

    [23] Schmid A, Papernov S, Li Z W. Liquid-crystal materials for high peak-power laser applications[J]. Molecular Crystals and Liquid Crystals, 207, 33-42(1991).

    [24] Vladimirov FL, Pletneva NI, Soms LN. Laser-damage resistance of the liquid crystal modulators[J]. Molecular Crystals and Liquid Crystals Science and Technology Section A, 321, 213-221(1998).

    [25] Marshall K L, Saulnier D, Xianyu H, et al. Liquid crystal nearIR laser beam shapers employing photoaddressable alignment layers f highpeakpower applications[C]Proc of SPIE. 2013: 88280N.

    [26] Raszewski Z, Piecek W, Jaroszewicz L. Transparent laser damage resistant nematic liquid crystal cell "LCNP3"[J]. Opto-Electronics Review, 22, 196-200(2014).

    [27] Tuna O, Selamet Y, Aygun G. High quality ITO thin films grown by DC and RF sputtering without oxygen[J]. Journal of Physics D: Applied Physics, 43(2010).

    [28] Wang Haifeng, Huang Zhimeng, Zhang Dayong. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 110, 113111(2011).

    [29] Yoo J-H, Matthews M, Ramsey P. Thermally ruggedized ITO transparent electrode films for high power optoelectronics[J]. Optics Express, 25, 25533-25545(2017).

    [30] Raszewski Z, Piecek W, Jaroszewicz L. Laser damage resistant nematic liquid crystal cell[J]. Journal of Applied Physics, 114, 053104(2013).

    [31] Liu Xiaofeng, Peng Liping, Gao Yanqi. Laser damage characteristics of indium-tin-oxide film and polyimide film[J]. Infrared Physics & Technology, 99, 80-85(2019).

    [32] Marshall KL, Gan J, Mitchell G, et al. Laserdamageresistant photoalignment layers f highpeakpower liquid crystal device applications[C]Proc of SPIE. 2008: 70500L.

    [33] Xia Gang, Fan Wei, Huang Dajie. High damage threshold liquid crystal binary mask for laser beam shaping[J]. High Power Laser Science and Engineering, 7, 1-6(2019).

    [34] Dorrer C, Wei S K H, Leung P. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices[J]. Optics Letters, 36, 4035-4037(2011).

    [35] Cao Zhaoliang, Mu Quanquan, Hu Lifa. The durability of a liquid crystal modulator for use with a high power laser[J]. Journal of Optics A: Pure and Applied Optics, 9, 427-430(2007).

    [36] Watson E A, Whitaker B, Harris S. Initial highpowerCWlaser testing of liquidcrystal optical phased array[R]. Interim Reprt, 2005.

    [37] Zhu G, Whitehead D, Perrie W. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications[J]. Journal of Physics D: Applied Physics, 51, 095603(2018).

    [38] Peng Liping, Zhao Yuanan, Liu Xiaofeng. High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength[J]. Optical Materials Express, 9, 911-922(2019).

    [39] Peng Liping, Zhao Yuanan, Liu Xiaofeng, et al. Investigation on damage process of indium tin oxide film induced by 1064nm quasiCW laser[C]Proc of SPIE. 2019: 1106302.

    [40] Zhou Zhuangqi, Wang Xiangru, Zhuo Rusheng. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter[J]. Applied Physics B: Lasers and Optics, 124, 35(2018).

    [42] He Xiaoxian, Wang Xiangru, Wu Liang. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering[J]. Optics Communications, 382, 437-443(2017).

    [43] Li J, Gauza S, Wu S T. Temperature effect on liquid crystal refractive indices[J]. Journal of Applied Physics, 96, 19-24(2004).

    [44] Li J, Wu S T. Self-consistency of Vuks equations for liquid-crystal refractive indices[J]. Journal of Applied Physics, 96, 6253-6258(2004).

    [46] Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulats[C]Proc of SPIE. 2006: 630602.

    Xiaofeng Liu, Yuan’an Zhao, Liping Peng, Xiaoshuang Wang, Dawei Li, Jianda Shao. Application problems of liquid crystal phase modulators to high power lasers[J]. High Power Laser and Particle Beams, 2020, 32(3): 032003
    Download Citation