• Photonics Research
  • Vol. 11, Issue 3, 364 (2023)
Letícia Avellar1, Anselmo Frizera1, Helder Rocha1, Mariana Silveira1, Camilo Díaz1, Wilfried Blanc2, Carlos Marques3、*, and Arnaldo Leal-Junior1
Author Affiliations
  • 1Graduate Program of Electrical Engineering, Federal University of Espirito Santo, Vitoria 29075-910, Brazil
  • 2Université Côte d’Azur, Institut de Physique de Nice, CNRS, 06108 Nice Cedex 2, France
  • 3I3N and Physics Department, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
  • show less
    DOI: 10.1364/PRJ.471301 Cite this Article Set citation alerts
    Letícia Avellar, Anselmo Frizera, Helder Rocha, Mariana Silveira, Camilo Díaz, Wilfried Blanc, Carlos Marques, Arnaldo Leal-Junior. Machine learning-based analysis of multiple simultaneous disturbances applied on a transmission-reflection analysis based distributed sensor using a nanoparticle-doped fiber[J]. Photonics Research, 2023, 11(3): 364 Copy Citation Text show less
    References

    [1] G. A. Akpakwu, B. J. Silva, G. P. Hancke, A. M. Abu-Mahfouz. A survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access, 6, 3619-3647(2017).

    [2] A. Burg, A. Chattopadhyay, K. Y. Lam. Wireless communication and security issues for cyber–physical systems and the Internet-of-Things. Proc. IEEE, 106, 38-60(2018).

    [3] S. R. Teli, S. Zvanovec, Z. Ghassemlooy. Optical Internet of Things within 5G: applications and challenges. 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), 40-45(2018).

    [4] C. A. R. Díaz, C. Leitão, C. A. Marques, N. Alberto, M. F. Domingues, T. Ribeiro, M. J. Pontes, A. Frizera, P. F. Antunes, P. S. André, M. R. Ribeiro. IOTOF: a long-reach fully passive low-rate upstream PHY for IoT over fiber. Electronics, 8, 359(2019).

    [5] E. Manavalan, K. Jayakrishna. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng., 127, 925-953(2019).

    [6] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, M. Mustaqim. Internet of Things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access, 8, 23022-23040(2020).

    [7] A. Sharma, R. A. Harrington, M. B. McClellan, M. P. Turakhia, Z. J. Eapen, S. Steinhubl, J. R. Mault, M. D. Majmudar, L. Roessig, K. J. Chandross, E. M. Green, B. Patel, A. Hamer, J. Olgin, J. S. Rumsfeld, M. T. Roe, E. D. Peterson. Using digital health technology to better generate evidence and deliver evidence-based care. J. Am. Coll. Cardiol., 71, 2680-2690(2018).

    [8] D. Lupton. Critical perspectives on digital health technologies. Soc. Compass, 8, 1344-1359(2014).

    [9] C. L. Campbell, C. Besselli. Impacting healthcare outcomes: connecting digital health within the veteran’s health administration home-based primary care (HBPC) program. Three Facets of Public Health and Paths to Improvements, 95-126(2020).

    [10] R. Shan, S. Sarkar, S. S. Martin. Digital health technology and mobile devices for the management of diabetes mellitus: state of the art. Diabetologia, 62, 877-887(2019).

    [11] Q. Shi, Z. Zhang, T. He, Z. Sun, B. Wang, Y. Feng, X. Shan, B. Salam, C. Lee. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun., 11, 1(2020).

    [12] R. Won. Intelligent learning with light. Nat. Photonics, 12, 570-571(2018).

    [13] K. Peters. Polymer optical fiber sensors—a review. Smart Mater. Struct., 20, 013002(2011).

    [14] A. Leal-Junior, A. Frizera-Neto. Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics(2022).

    [15] T. Islam, S. C. Mukhopadhyay, N. K. Suryadevara. Smart sensors and Internet of Things: a postgraduate paper. IEEE Sens. J., 17, 577-584(2017).

    [16] S. Li, L. D. Xu, S. Zhao. 5G Internet of Things: a survey. J. Ind. Inf. Integr., 10, 1-9(2018).

    [17] L. Avellar, C. S. Filho, G. Delgado, A. Frizera, E. Rocon, A. Leal-Junior. AI-enabled photonic smart garment for movement analysis. Sci. Rep., 12, 4067(2022).

    [18] A. G. Leal-Junior, C. A. Diaz, L. M. Avellar, M. J. Pontes, C. Marques, A. Frizera. Polymer optical fiber sensors in healthcare applications: a comprehensive review. Sensors, 19, C1-C30(2019).

    [19] D. Li. 5G and intelligence medicine—how the next generation of wireless technology will reconstruct healthcare?. Precis. Clin. Med., 2, 205-208(2019).

    [20] G. Rajan. Optical Fiber Sensors: Advanced Techniques & Applications(2015).

    [21] G. Numata, N. Hayashi, M. Tabaru, Y. Mizuno, K. Nakamura. Ultra-sensitive strain and temperature sensing based on modal interference in perfluorinated polymer optical fibers. IEEE Photon. J., 6, 6802306(2014).

    [22] A. Minardo, R. Bernini, L. Zeni. Distributed temperature sensing in polymer optical fiber by bofda. IEEE Photon. Technol. Lett., 26, 387-390(2014).

    [23] A. G. Leal-Junior, C. R. Díaz, C. Marques, M. J. Pontes, A. Frizera. Multiplexing technique for quasi-distributed sensors arrays in polymer optical fiber intensity variation-based sensors. Opt. Laser Technol., 111, 81-88(2019).

    [24] K. Hill, G. Meltz. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol., 15, 1263-1276(1997).

    [25] V. V. Spirin, P. L. Swart, A. A. Chtcherbakov, S. V. Miridonov, M. Shlyagin. 20-km-length distributed fiber optical loss sensor based on transmission-reflection analysis. Opt. Eng., 44, 040501(2005).

    [26] M. K. Barnoski, M. D. Rourke, S. M. Jensen, R. T. Melville. Optical time domain reflectometer. Appl. Opt., 16, 2375-2379(1977).

    [27] W. Eickhoff, R. Ulrich. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett., 39, 693-695(1981).

    [28] D. Tosi, C. Molardi, M. Sypabekova, W. Blanc. Enhanced backscattering optical fiber distributed sensors: tutorial and review. IEEE Sens. J., 21, 12667-12678(2021).

    [29] V. Spirin, M. Shlyagin, S. Miridonov, P. Swart. Transmission/reflection analysis for distributed optical fibre loss sensor interrogation. Electron. Lett., 38, 117-118(2002).

    [30] V. Spirin, F. Mendieta, S. Miridonov, M. Shlyagin, A. Chtcherbakov, P. Swart. Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis. IEEE Photon. Technol. Lett., 16, 569-571(2004).

    [31] M. Cen, V. Moeyaert, P. Mégret, M. Wuilpart. Localization and quantification of reflective events along an optical fiber using a bi-directional TRA technique. Opt. Express, 22, 9839-9853(2014).

    [32] M. Silveira, A. Frizera, A. Leal-Junior, D. Ribeiro, C. Marques, W. Blanc, C. A. R. Díaz. Transmission–reflection analysis in high scattering optical fibers: A comparison with single-mode optical fiber. Opt. Fiber Technol., 58, 102303(2020).

    [33] W. Blanc, I. Martin, H. Francois-Saint-Cyr, X. Bidault, S. Chaussedent, C. Hombourger, S. Lacomme, P. L. Coustumer, D. R. Neuville, D. J. Larson, T. J. Prosa, C. Guillermier. Compositional changes at the early stages of nanoparticles growth in glasses. J. Phys. Chem. C, 123, 29008-29014(2019).

    [34] A. G. Leal-Junior, D. Ribeiro, L. M. Avellar, M. Silveira, C. A. R. Diaz, A. Frizera-Neto, W. Blanc, E. Rocon, C. Marques. Wearable and fully-portable smart garment for mechanical perturbation detection with nanoparticles optical fibers. IEEE Sens. J., 21, 2995-3003(2021).

    [35] W. Blanc, V. Mauroy, L. Nguyen, B. N. S. Bhaktha, P. Sebbah, B. P. Pal, B. Dussardier. Fabrication of rare earth-doped transparent glass ceramic optical fibers by modified chemical vapor deposition. J. Am. Ceram. Soc., 94, 2315-2318(2011).

    [36] L. Shiloh, A. Lellouch, R. Giryes, A. Eyal. Fiber-optic distributed seismic sensing data generator and its application for training classification nets. Opt. Lett., 45, 1834-1837(2020).

    [37] Y. Shi, Y. Wang, L. Wang, L. Zhao, Z. Fan. Multi-event classification for Φ-OTDR distributed optical fiber sensing system using deep learning and support vector machine. Optik, 221, 165373(2020).

    [38] Y. Shi, Y. Wang, L. Zhao, Z. Fan. An event recognition method for Φ-OTDR sensing system based on deep learning. Sensors, 19, 3421(2019).

    [39] Z. Sun, K. Liu, J. Jiang, T. Xu, S. Wang, H. Guo, Z. Zhou, K. Xue, Y. Huang, T. Liu. Optical fiber distributed vibration sensing using grayscale image and multi-class deep learning framework for multi-event recognition. IEEE Sens. J., 21, 19112-19120(2021).

    Letícia Avellar, Anselmo Frizera, Helder Rocha, Mariana Silveira, Camilo Díaz, Wilfried Blanc, Carlos Marques, Arnaldo Leal-Junior. Machine learning-based analysis of multiple simultaneous disturbances applied on a transmission-reflection analysis based distributed sensor using a nanoparticle-doped fiber[J]. Photonics Research, 2023, 11(3): 364
    Download Citation