• High Power Laser and Particle Beams
  • Vol. 33, Issue 8, 081003 (2021)
Xizheng Ke1、2, Shangjun Yang1、*, Jiali Wu1, and Xirui Zhong1
Author Affiliations
  • 1School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
  • 2College of Physics and Electronics, Shaanxi University of Technology, Hanzhong 723001, China
  • show less
    DOI: 10.11884/HPLPB202133.210167 Cite this Article
    Xizheng Ke, Shangjun Yang, Jiali Wu, Xirui Zhong. Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology[J]. High Power Laser and Particle Beams, 2021, 33(8): 081003 Copy Citation Text show less
    References

    [2] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 65, 229-236(1953).

    [7] Fried D L. Adaptive optics topical issue[J]. Journal of the Optical Society of America A, 67, 422(1977).

    [8] Tyson R K. Adaptive optics and ground-to-space laser communications[J]. Applied Optics, 35, 3640-3646(1996).

    [9] Tyson R K. Bit-error rate for free-space adaptive optics laser communications[J]. Journal of the Optical Society of America A, 19, 753-758(2002).

    [10] Tyson R K, Canning D E, Tharp J S. Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results[J]. Optical Engineering, 44, 096002(2005).

    [11] Wilks S C, Mris J R, Brase J M, et al. Modeling of adaptive opticsbased freespace communications systems[C]Proceedings Volume 4821, FreeSpace Laser Communication Laser Imaging II. 2002, 4821: 121128.

    [12] Thompson C A, Kartz M W, Flath L M, et al. Free space optical communications utilizing MEMS adaptive optics crection[C]Proceedings Volume 4821, FreeSpace Laser Communication Laser Imaging II. 2002, 4821: 129138.

    [13] Weyrauch T, Vorontsov M A. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications[J]. Applied Optics, 44, 6388-6401(2005).

    [14] Weyrauch T, Vorontsov M A. Free-space laser communications with adaptive optics: atmospheric compensation experiments[J]. Journal of Optical and Fiber Communications Reports, 1, 355-379(2004).

    [15] Wright M W, Roberts J E, Farr W H, et al. Improved optical communications performance combining adaptive optics and pulse position modulation[J]. Optical Engineering, 47, 016003(2008).

    [16] Hemmati H, Chen Y J, Crossfield I. Telescope wavefront aberration compensation with a defmable mirr in an adaptive optics system[C]Proceedings of SPIE, FreeSpace Laser Communication Technologies XVIII. 2006, 6105: 123127.

    [17] Wilson K E, Wright M W, Lee S, et al. Adaptive optics f daytime deep space laser communications from Mars[C]Digest of the LEOS Summer Topical Meeting. 2005: 1920.

    [18] Boson D M, Biswas A, Edwards B L. MLCD: Overview of NASA’s Mars laser communications demonstration system[C]Proceedings of SPIE, FreeSpace Laser Communication Technologies XVI. 2004, 5338: 1628.

    [19] Stewart J B, Murphy D V, Moes J D, et al. Comparing adaptive optics approaches f NASA LCRD ground station #2[C]Proceedings of SPIE, FreeSpace Laser Communication Atmospheric Propagation XXV. 2013, 8610: 86100M.

    [20] Wright M W, Morris J F, Kovalik J M, et al. Adaptive optics correction into single mode fiber for a low earth orbiting space to ground optical communication link using the OPALS downlink[J]. Optics Express, 23, 33705-33712(2015).

    [21] Juarez J C, Young D W, Sluz J E, et al. Freespace optical channel propagation tests over a 147km link[C]Proceedings of SPIE, Atmospheric Propagation VIII. 2011, 8038: 80380B.

    [22] Heine F, Kämpfner H, Czichy R, et al. Optical intersatellite communication operational[C]Milcom 2010 Military Communications Conference. 2010: 15831887.

    [23] Sodnik Z, Armengol J P, Czichy R H, et al. Adaptive optics ESA’s optical ground station[C]Proceedings of SPIE, FreeSpace Laser Communications IX. 2009, 7464: 746406.

    [24] Berkefeld T, Soltau D, Czichy R, et al. Adaptive optics f satellitetoground laser communication at the 1m telescope of the ESA Optical Ground Station, Tenerife, Spain[C]Proceedings of SPIE, Adaptive Optics Systems II. 2010, 7736: 77364C.

    [25] Gregy M, Troendle D, Muehlnikel G, et al. Three years coherent space to ground links: perfmance results outlook f the optical ground station equipped with adaptive optics[C]Proceedings of SPIE, Freespace Laser Communication Atmospheric Propagation XXV. 2013: 746406.

    [26] Arimoto Y, Toyoshima M, Toyoda M, et al. Preliminary result on laser communication experiment using (ETSVI)[C]Proceedings of SPIE, FreeSpace Laser Communication Technologies VII. 1995, 2381: 151158.

    [27] Kudielka K H, Hayano Y, Klaus W, et al. Lowder adaptive optics system f freespace lasercom: design perfmance analysis[C]Proceedings of the 2nd International Wkshop on Adaptive Optics f Industry Medicine. 2015.

    [28] Petit C, Vedrenne N, Michau V, et al. Adaptive optics results with SOTA[C]2015 IEEE International Conference on Space Optical Systems Applications. 2016: 17.

    [29] Hashmi A J, Eftekhar A A, Adibi A, et al. Analysis of adaptive optics-based telescope arrays in a deep-space inter-planetary optical communications link between Earth and Mars[J]. Optics Communications, 333, 120-128(2014).

    [30] Pasupathi T, Selvi J A V, Samuel J N. Mitigation of lowder atmospheric turbulent effects using sensless adaptive optics in terrestrial free space optical communication[C]2016 International Conference on Emerging Trends in Engineering, Technology Science (ICETETS). 2016.

    [31] Carrizo C E, Calvo R M, Belmonte A. Proof of concept for adaptive sequential optimization of free-space communication receivers[J]. Applied Optics, 58, 5397-5403(2019).

    [32] Brady A, Rössler C, Leonhard N, et al. Validation of pre-compensation under point-ahead-angle in a 1 km free-space propagation experiment[J]. Optics Express, 27, 17840-17850(2019).

    [33] Baykal Y, Gökçe M, Ata Y. Application of adaptive optics on bit error rate of M-ary pulse-position-modulated oceanic optical wireless communication systems[J]. Laser Physics, 30, 076202(2020).

    [34] Toselli I, Gladysz S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence[J]. Optics Express, 28, 17347-17361(2020).

    [35] Paillier L, Le Bidan R, Conan J M, et al. Space-ground coherent optical links: ground receiver performance with adaptive optics and digital phase-locked loop[J]. Journal of Lightwave Technology, 38, 5716-5727(2020).

    [36] Ata Y, Korotkova O. Adaptive optics correction in natural turbulent waters[J]. Journal of the Optical Society of America A, 38, 587-594(2021).

    [37] Osborn J, Townson M J, Farley O J D, et al. Adaptive optics pre-compensated laser uplink to LEO and GEO[J]. Optics Express, 29, 6113-6132(2021).

    [38] Leonhard N, Berlich R, Minardi S, et al. Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication[J]. Optics Express, 24, 13157-13172(2016).

    [39] Chu Xiuxiang, Qiao Chunhong, Feng Xiaoxing, et al. Propagation of Gaussian-Schell beam in turbulent atmosphere of three-layer altitude model[J]. Applied Optics, 50, 3871-3878(2011).

    [49] Li Jiawei, Zhang Zhen, Gao Jianqiu, et al. Bandwidth of adaptive optics system in atmospheric coherent laser communication[J]. Optics Communications, 359, 254-260(2016).

    [51] Liu Wei, Shi Wenxiao, Wang Bin, et al. Free space optical communication performance analysis with focal plane based wavefront measurement[J]. Optics Communications, 309, 212-220(2013).

    [53] Liu Wei, Shi Wenxiao, Yao Kainan, et al. Fiber coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor[J]. Optics & Laser Technology, 60, 116-123(2014).

    [54] Li Zhaokun, Cao Jingtai, Zhao Xiaohui, et al. Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication[J]. Optics Communications, 320, 162-168(2014).

    [55] Liu Wei, Yao Kainan, Huang Danian, et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the greenwood frequency[J]. Optics Express, 24, 13288-13302(2016).

    [56] Ren Yongxiong, Xie Guodong, Huang Hao, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 39, 2845-2848(2014).

    [57] Cao Jingtai, Zhao Xiaohui, Li Zhaokun, et al. Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication[J]. Optik, 125, 6142-6147(2014).

    [58] Liu Chao, Chen Shanqiu, Li Xinyang, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Optics Express, 22, 15554-15563(2014).

    [59] Liu Chao, Chen Mo, Chen Shanqiu, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 361, 21-24(2016).

    [60] Huang Jian, Deng Ke, Liu Chao, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication[J]. Optics Express, 22, 16000-16007(2014).

    [61] Huang Jian, Mei Haiping, Deng Ke, et al. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation[J]. Optics Communications, 356, 574-577(2015).

    [62] Li Ming, Cvijetic M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction[J]. Applied Optics, 54, 1453-1462(2015).

    [63] Li Ming, Gao Wenbo, Cvijetic M. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction[J]. Applied Optics, 56, 284-297(2017).

    [64] Chen Mo, Liu Chao, Xian Hao. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics[J]. Applied Optics, 54, 8722-8276(2015).

    [65] Zhao Shengmei, Wang Le, Zou Li, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing[J]. Optics Communications, 376, 92-98(2016).

    [66] Chen Mo, Liu Chao, Rui Daoman, et al. Experimental results of 5-Gbps free-space coherent optical communications with adaptive optics[J]. Optics Communications, 418, 115-119(2018).

    [68] Yang Leqiang, Yao Kainan, Wang Jianli, et al. Performance analysis of 349-element adaptive optics unit for a coherent free space optical communication system[J]. Scientific Reports, 9, 13150(2019).

    [69] Chang Huan, Yin Xiaoli, Cui Xiaozhou, et al. Performance analysis of adaptive optics with a phase retrieval algorithm in orbital-angular-momentum-based oceanic turbulence links[J]. Applied Optics, 58, 6085-6090(2019).

    [70] Rui Daoman, Liu Chao, Chen Mo, et al. Probability enhancement of fiber coupling efficiency under turbulence with adaptive optics compensation[J]. Optical Fiber Technology, 60, 102343(2020).

    [71] Chang Huan, Yin Xiaoli, Yao Haipeng, et al. Low-complexity adaptive optics aided orbital angular momentum based wireless communications[J]. IEEE Transactions on Vehicular Technology, 1, 1-13(2020).

    [72] Gu Haijun, Liu Meiqi, Liu Haoyu, et al. An algorithm combining convolutional neural networks with SPGD for SLAO in FSOC[J]. Optics Communications, 475, 126243(2020).

    [73] Jiang Lun, Dai Zhengshuang, Yu Xin, et al. Experimental demonstration of a single-mode fiber coupling over a 1 km urban path with adaptive optics[J]. Journal of Russian Laser Research, 42, 363-370(2021).

    [74] Zhang Shen, Wang Rui, Wang Yukun, et al. Extending the detection and correction abilities of an adaptive optics system for free-space optical communication[J]. Optics Communications, 482, 126571(2021).

    [75] Chen Mo, Liu Chao, Rui Daoman, et al. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle[J]. Optics Express, 26, 4230-4242(2018).

    [76] Liu Wei, Yao Kainan, Chen Lu, et al. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor[J]. Optics & Laser Technology, 100, 332-341(2018).

    [78] Ke Xizheng, Deng Lijun. They of partially coherent optical transmission in wireless optical communication[M]. Beijing: Science Press, 2016

    [79] Ke Xizheng, Yin Zhiyun. Coding they in wireless laser communication system[M]. Beijing: Science Press, 2009

    [80] Ke Xizheng, Deng Lijun. Wireless laser communication[M]. Beijing: Science Press, 2016

    [81] Ke Xizheng, Chen Juan, Deng Lijun. Space time coding they f wireless optical MIMO systems[M]. Beijing: Science Press, 2014

    [82] Ke Xizheng. Principle application of wireless optical thogonal frequency division multiplexing[M]. Beijing: Science Press, 2017

    [83] Ke Xizheng, Wu Jiali. Principle application of wireless optical coherent communication[M]. Beijing: Science Press, 2019

    [84] Ke Xizheng. They of UV selfganizing wk[M]. Beijing: Science Press, 2011

    [85] Ke Xizheng, Wang Jiao. Generation, transmission, detection application of vtex beam[M]. Beijing: Science Press, 2018

    [86] Ke Xizheng, Chen Jinni. Heterodyne detection system method f wireless laser communication: CN103051375A[P]. 20130417

    [88] Wu Jiali, Ke Xizheng. Development of adaptive optical correction and polarization control modules for 10-km free-space coherent optical communications[J]. Journal of Modern Optics, 67, 189-195(2020).

    [89] Ke Xizheng, Yang Shangjun, Wang Jiao. Experimental study of free space coherent optical communication on 1km[C]10th International Conference on Advanced Infocomm Technology (ICAIT). Stockholm, Sweden: IEEE, 2018: 6165.

    [90] Ke Xizheng, Chen Xiaozhan. Correcting wavefront distortion of dual-wavelength beams due to atmospheric turbulence with a correction coefficient[J]. Optics and Photonics Journal, 10, 64-77(2020).

    [91] Ke Xizheng, Tan Zhenkun. Effect of angle-of-arrival fluctuation on heterodyne detection in slant atmospheric turbulence[J]. Applied Optics, 57, 1083-1090(2018).

    [92] Tan Zhenkun, Ke Xizheng. Analysis of a heterodyne detection system affected by irradiance and phase fluctuations in slant atmospheric turbulence[J]. Applied Optics, 57, 9596-9603(2018).

    [93] Boyer C, Michau V, Rousset G. Adaptive optics: Interaction matrix measurements realtime control algithms f the COMEON project[C]Proceedings Volume 1237, Amplitude Intensity Spatial Interferometry. 1990, 1237: 6381.

    [94] Kasper M, Fedrigo E, Looze D P, et al. Fast calibration of high-order adaptive optics systems[J]. Journal of the Optical Society of America A, 21, 1004-1008(2004).

    [95] Paschall R N, Anderson D J. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements[J]. Applied Optics, 32, 6347-6358(1993).

    [96] Zhang Danyu. Research on wavefront disttion control experiment of adaptive optics[D]. Xi’an: Xi’an University of Technology, 2020

    [97] Polo A, Haber A, Pereira S F, et al. An innovative and efficient method to control the shape of push-pull membrane deformable mirror[J]. Optics Express, 20, 27922-27932(2012).

    [98] Haber A, Polo A, Smith C S, et al. Iterative learning control of a membrane deformable mirror for optimal wavefront correction[J]. Applied Optics, 52, 2363-2373(2013).

    [100] Ke Xizheng, Zhang Danyu. Fuzzy control algorithm for adaptive optical systems[J]. Applied Optics, 58, 9967-9975(2019).

    [102] Yang Ke. Research on wavefront sensing technology with computational light field imaging[D]. Xi’an: Xi’an University of Technology, 2019

    [104] Ke Xizheng, Zhang Yunfeng. Wavefrontfree sensing adaptive system method of improving convergence rate by using system: CN110365404A[P]. 20191022

    [105] Li Mei. Experimental study on eigenmode method crection of beam disttion[D]. Xi’an: Xi’an University of Technology, 2020

    [107] Ke Xizheng, Li Mei. Laser beam distorted wavefront correction based on deformable mirror eigenmodes[J]. Optical Engineering, 58, 126101(2019).

    [110] Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 31, 939-941(2006).

    [112] Wu Jiali. Research of the coherent optical communication system with wavefront sensless[D]. Xi’an: Xi’an University of Technology, 2018

    [113] Vorontsov M A. Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion[J]. Journal of the Optical Society of America A, 19, 356-368(2002).

    [115] Tan Zhenkun. Effects of facts on the perfmance of heterodyne detection experimental investigation in wireless optical communication[D]. Xi’an: Xi’an University of Technology, 2019

    [116] Wang Xiayao. Research on adaptive optics crection technique of vtex beams[D]. Xi’an: Xi’an University of Technology, 2018

    [118] Cui Namei. Experimental research on crecting wavefront disttion of vtex beam by phase diversity method[D]. Xi’an: Xi’an University of Technology, 2020

    [119] Ke Xizheng, Cui Namei. Experimental research on phase diversity method for correcting vortex beam distortion wavefront[J]. Applied Physics B, 126, 66(2020).

    [121] Kong Yingxiu. Wavefront crection technique of spatial coherent optical communication with LCSLM[D]. Xi’an: Xi’an University of Technology, 2019

    [126] Ke Xizheng, Chen Wei. Space optic coupling detection device based on optical fiber arrays: CN103209022A[P]. 20130717

    [127] Luo Jing. Research on automatic alignment technology of space optical fiber coupling[D]. Xi’an: Xi’an University of Technology, 2018

    [128] Ke Xizheng, Yin Benkang. Experimental research on automatic alignment and control algorithm of spatial light-fiber coupling[J]. International Journal of Optics, 2021, 8481146(2021).

    [129] Ke Xizheng, Zhang Xutong. Method of improving singlemode optical fiber coupling efficiency through mode conversion: CN110133803A[P]. 20190816

    [130] Zhang Xutong. Research on mode conversion to improve coupling efficiency on singlemode fiber[D]. Xi’an: Xi’an University of Technology, 2020

    [131] Ke Xizheng, Zhang Xutong. Conversion of free-space optical path mode by spatial light modulator[J]. Optical Engineering, 59, 016109(2020).

    Xizheng Ke, Shangjun Yang, Jiali Wu, Xirui Zhong. Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology[J]. High Power Laser and Particle Beams, 2021, 33(8): 081003
    Download Citation