• Photonics Research
  • Vol. 9, Issue 12, 2325 (2021)
Shuwei Qiu1, Jinwen Wang1、2, Francesco Castellucci2, Mingtao Cao3、5, Shougang Zhang3, Thomas W. Clark4, Sonja Franke-Arnold2, Hong Gao1、*, and Fuli Li1
Author Affiliations
  • 1Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • 2School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
  • 3Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
  • 4Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
  • 5e-mail: mingtaocao@ntsc.ac.cn
  • show less
    DOI: 10.1364/PRJ.418522 Cite this Article Set citation alerts
    Shuwei Qiu, Jinwen Wang, Francesco Castellucci, Mingtao Cao, Shougang Zhang, Thomas W. Clark, Sonja Franke-Arnold, Hong Gao, Fuli Li. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor[J]. Photonics Research, 2021, 9(12): 2325 Copy Citation Text show less
    References

    [1] K.-J. Boller, A. Imamoğlu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66, 2593-2596(1991).

    [2] D. J. Fulton, R. R. Moseley, S. Shepherd, B. D. Sinclair, M. H. Dunn. Effects of Zeeman splitting on electromagnetically-induced transparency. Opt. Commun., 116, 231-239(1995).

    [3] S. A. Lezama, A. M. Akulshin. Electromagnetically induced absorption. Phys. Rev. A, 59, 4732-4735(1999).

    [4] F. Renzoni, W. Maichen, L. Windholz, E. Arimondo. Coherent population trapping with losses observed on the Hanle effect of the d1 sodium line. Phys. Rev. A, 55, 3710-3718(1997).

    [5] J. Kitching, S. Knappe, E. A. Donley. Atomic sensors–a review. IEEE Sens. J., 11, 1749-1758(2011).

    [6] R. Wiesendanger. Single-atom magnetometry. Curr. Opin. Solid State Mater. Sci., 15, 1-7(2011).

    [7] D. Drung, R. Cantor, M. Peters, H. Scheer, H. Koch. Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics. Appl. Phys. Lett., 57, 406-408(1990).

    [8] M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr. Femtotesla magnetic field measurement with magnetoresistive sensors. Science, 304, 1648-1650(2004).

    [9] I. Kominis, T. Kornack, J. Allred, M. V. Romalis. A subfemtotesla multichannel atomic magnetometer. Nature, 422, 596-599(2003).

    [10] M. Fleischhauer, M. O. Scully. Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence. Phys. Rev. A, 49, 1973-1986(1994).

    [11] E. Alipieva, S. Gateva, E. Taskova, S. Cartaleva. Narrow structure in the coherent population trapping resonance in rubidium. Opt. Lett., 28, 1817-1819(2003).

    [12] S. Gateva, L. Petrov, E. Alipieva, G. Todorov, V. Domelunksen, V. Polischuk. Shape of the coherent-population-trapping resonances and high-rank polarization moments. Phys. Rev. A, 76, 025401(2007).

    [13] V. Acosta, M. Ledbetter, S. Rochester, D. Budker, D. J. Kimball, D. Hovde, W. Gawlik, S. Pustelny, J. Zachorowski, V. Yashchuk. Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys. Rev. A, 73, 053404(2006).

    [14] S. Afach, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, Z. D. Grujić, L. Hayen, V. Hélaine, M. Kasprzak, K. Kirch, P. Knowles, H.-C. Koch, S. Komposch, A. Kozela, J. Krempel, B. Lauss, T. Lefort, Y. Lemière, A. Mtchedlishvili, O. Naviliat-Cuncic, F. M. Piegsa, P. N. Prashanth, G. Quéméner, M. Rawlik, D. Ries, S. Roccia, D. Rozpedzik, P. Schmidt-Wellenburg, N. Severjins, A. Weis, E. Wursten, G. Wyszynski, J. Zejma, G. Zsigmond. Highly stable atomic vector magnetometer based on free spin precession. Opt. Express, 23, 22108-22115(2015).

    [15] G. Bison, V. Bondar, P. Schmidt-Wellenburg, A. Schnabel, J. Voigt. Sensitive and stable vector magnetometer for operation in zero and finite fields. Opt. Express, 26, 17350-17359(2018).

    [16] G. Zhang, S. Huang, F. Xu, Z. Hu, Q. Lin. Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography. Opt. Express, 27, 597-607(2019).

    [17] I. Novikova, A. Matsko, V. Velichansky, M. O. Scully, G. R. Welch. Compensation of ac stark shifts in optical magnetometry. Phys. Rev. A, 63, 063802(2001).

    [18] S. Pustelny, D. J. Kimball, S. Rochester, V. Yashchuk, W. Gawlik, D. Budker. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light. Phys. Rev. A, 73, 023817(2006).

    [19] D. Budker, V. Yashchuk, M. Zolotorev. Nonlinear magneto-optic effects with ultranarrow widths. Phys. Rev. Lett., 81, 5788-5791(1998).

    [20] D. Budker, D. Kimball, S. Rochester, V. Yashchuk, M. Zolotorev. Sensitive magnetometry based on nonlinear magneto-optical rotation. Phys. Rev. A, 62, 043403(2000).

    [21] I. Novikova, A. Matsko, V. Sautenkov, V. Velichansky, G. Welch, M. Scully. Ac-Stark shifts in the nonlinear Faraday effect. Opt. Lett., 25, 1651-1653(2000).

    [22] S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, W. Gawlik. Magnetometry based on nonlinear magneto-optical rotation with amplitude-modulated light. J. Appl. Phys., 103, 063108(2008).

    [23] V. Shah, S. Knappe, P. D. Schwindt, J. Kitching. Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photonics, 1, 649-652(2007).

    [24] D. Budker, M. Romalis. Optical magnetometry. Nat. Phys., 3, 227-234(2007).

    [25] D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, R. L. Walsworth. Optical magnetic imaging of living cells. Nature, 496, 486-489(2013).

    [26] H. Lee, M. Fleischhauer, M. O. Scully. Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence. Phys. Rev. A, 58, 2587-2595(1998).

    [27] J. Dimitrijević, A. Krmpot, M. Mijailović, D. Arsenović, B. Panić, Z. Grujić, B. Jelenković. Role of transverse magnetic fields in electromagnetically induced absorption for elliptically polarized light. Phys. Rev. A, 77, 013814(2008).

    [28] V. Yudin, A. Taichenachev, Y. Dudin, V. Velichansky, A. Zibrov, S. Zibrov. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light. Phys. Rev. A, 82, 033807(2010).

    [29] K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, E. E. Mikhailov. Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor. Phys. Rev. A, 83, 015801(2011).

    [30] L. Margalit, M. Rosenbluh, A. Wilson-Gordon. Degenerate two-level system in the presence of a transverse magnetic field. Phys. Rev. A, 87, 033808(2013).

    [31] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [32] J. Wang, F. Castellucci, S. Franke-Arnold. Vectorial light–matter interaction: exploring spatially structured complex light fields. AVS Quantum Sci., 2, 031702(2020).

    [33] F. K. Fatemi. Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems. Opt. Express, 19, 25143-25150(2011).

    [34] J. Wang, X. Yang, Y. Li, Y. Chen, M. Cao, D. Wei, H. Gao, F. Li. Optically spatial information selection with hybridly polarized beam in atomic vapor. Photon. Res., 6, 451-456(2018).

    [35] X. Yang, A. Fang, J. Wang, Y. Li, X. Chen, X. Zhang, M. Cao, D. Wei, K. Müller-Dethlefs, H. Gao, F. Li. Manipulating the transmission of vector beam with spatially polarized atomic ensemble. Opt. Express, 27, 3900-3908(2019).

    [36] J. Wang, X. Yang, Z. Dou, S. Qiu, J. Liu, Y. Chen, M. Cao, H. Chen, D. Wei, K. Müller-Dethlefs, H. Gao, F. Li. Directly extracting the authentic basis of cylindrical vector beams by a pump-probe technique in an atomic vapor. Appl. Phys. Lett., 115, 221101(2019).

    [37] J. Wang, Y. Chen, X. Yang, J. Liu, S. Qiu, M. Cao, H. Chen, D. Wei, K. Müller-Dethlefs, H. Gao, F. Li. Optically polarized selection in atomic vapor and its application in mapping the polarization distribution. J. Phys. Commun., 4, 015019(2020).

    [38] S. Shi, D.-S. Ding, Z.-Y. Zhou, Y. Li, W. Zhang, B.-S. Shi. Magnetic-field-induced rotation of light with orbital angular momentum. Appl. Phys. Lett., 106, 261110(2015).

    [39] L. Stern, A. Szapiro, E. Talker, U. Levy. Controlling the interactions of space-variant polarization beams with rubidium vapor using external magnetic fields. Opt. Express, 24, 4834-4841(2016).

    [40] F. Bouchard, H. Larocque, A. M. Yao, C. Travis, I. De Leon, A. Rubano, E. Karimi, G.-L. Oppo, R. W. Boyd. Polarization shaping for control of nonlinear propagation. Phys. Rev. Lett., 117, 233903(2016).

    [41] H. Hu, D. Luo, H. Chen. Nonlinear frequency conversion of vector beams with four wave mixing in atomic vapor. Appl. Phys. Lett., 115, 211101(2019).

    [42] V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, J. Laurat. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 6, 7706(2015).

    [43] Y.-H. Ye, M.-X. Dong, Y.-C. Yu, D.-S. Ding, B.-S. Shi. Experimental realization of optical storage of vector beams of light in warm atomic vapor. Opt. Lett., 44, 1528-1531(2019).

    [44] N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, S. Franke-Arnold. Spatially dependent electromagnetically induced transparency. Phys. Rev. Lett., 114, 123603(2015).

    [45] X. Yang, Y. Chen, J. Wang, Z. Dou, M. Cao, D. Wei, H. Batelaan, H. Gao, F. Li. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor. Opt. Lett., 44, 2911-2914(2019).

    [46] T. W. Clark. Sculpting shadows on the spatial structuring of fields & atoms: a tale of light and darkness(2016).

    [47] F. Castellucci, T. W. Clark, A. Selyem, J. Wang, S. Franke-Arnold. An atomic compass–detecting 3D magnetic field alignment with vector vortex light(2021).

    [48] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [49] L. Marrucci, C. Manzo, D. Paparo. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Appl. Phys. Lett., 88, 221102(2006).

    [50] G. Milione, H. Sztul, D. Nolan, R. Alfano. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [51] M. Auzinsh, D. Budker, S. Rochester. Optically Polarized Atoms: Understanding Light-Atom Interactions(2010).

    [52] Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, C. Andreeva. Coherent effects on the Zeeman sublevels of hyperfine states in optical pumping of Rb by monomode diode laser. Opt. Commun., 178, 103-110(2000).

    [53] R. Meshulam, T. Zigdon, A. Wilson-Gordon, H. Friedmann. Transfer-of-coherence-enhanced stimulated emission and electromagnetically induced absorption in Zeeman split Fg–>Fe = Fg–1 atomic transitions. Opt. Lett., 32, 2318-2320(2007).

    [54] J. Anupriya, N. Ram, M. Pattabiraman. Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam. Phys. Rev. A, 81, 043804(2010).

    [55] W. Happer. Optical pumping. Rev. Mod. Phys., 44, 169-249(1972).

    [56] A. Huss, R. Lammegger, L. Windholz, E. Alipieva, S. Gateva, L. Petrov, E. Taskova, G. Todorov. Polarization-dependent sensitivity of level-crossing, coherent-population-trapping resonances to stray magnetic fields. J. Opt. Soc. Am. B, 23, 1729-1736(2006).

    [57] L. Yin, B. Luo, J. Xiong, H. Guo. Tunable rubidium excited state Voigt atomic optical filter. Opt. Express, 24, 6088-6093(2016).

    [58] A. Selyem. Three-dimensional light sculptures and their interaction with atomic media: an experimentalist’s guide(2019).

    [59] Y. Chen, K.-Y. Xia, W.-G. Shen, J. Gao, Z.-Q. Yan, Z.-Q. Jiao, J.-P. Dou, H. Tang, Y.-Q. Lu, X.-M. Jin. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).

    [60] C. L. Garrido Alzar. Compact chip-scale guided cold atom gyrometers for inertial navigation: enabling technologies and design study. AVS Quantum Sci., 1, 014702(2019).

    [61] L. Stern, D. G. Bopp, S. A. Schima, V. N. Maurice, J. E. Kitching. Chip-scale atomic diffractive optical elements. Nat. Commun., 10, 1(2019).

    [62] J. P. Mcgilligan, K. Moore, A. Dellis, G. Martinez, E. de Clercq, P. Griffin, A. Arnold, E. Riis, R. Boudot, J. Kitching. Laser cooling in a chip-scale platform. Appl. Phys. Lett., 117, 054001(2020).

    [63] B. Chen, X. Hou, F. Ge, X. Zhang, Y. Ji, H. Li, P. Qian, Y. Wang, N. Xu, J. Du. Calibration-free vector magnetometry using nitrogen-vacancy center in diamond integrated with optical vortex beam. Nano Lett., 20, 8267-8272(2020).

    Shuwei Qiu, Jinwen Wang, Francesco Castellucci, Mingtao Cao, Shougang Zhang, Thomas W. Clark, Sonja Franke-Arnold, Hong Gao, Fuli Li. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor[J]. Photonics Research, 2021, 9(12): 2325
    Download Citation