• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220381 (2022)
Pengfei Liu1, Linhao Ren1, Hao Wen1, Lei Shi1、2, and Xinliang Zhang1、2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Optics Valley Laboratory, Wuhan 430074, China
  • show less
    DOI: 10.3788/IRLA20220381 Cite this Article
    Pengfei Liu, Linhao Ren, Hao Wen, Lei Shi, Xinliang Zhang. Progress in integrated electro-optic frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220381 Copy Citation Text show less
    References

    [1] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [2] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nature Photonics, 13, 158-169(2019).

    [3] H Guo, M Karpov, E Lucas, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nature Physics, 13, 94-102(2017).

    [4] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [5] L E Hargrove, R L Fork, M A Pollack. Locking of He-Ne laser modes induced by synchronous intracavity modulation. Applied Physics Letters, 5, 4(1964).

    [6] J L Hall. Nobel lecture: Defining and measuring optical frequencies. Reviews of Modern Physics, 78, 1279-1295(2006).

    [7] T W Hänsch. Nobel lecture: Passion for precision. Reviews of Modern Physics, 78, 1297-1309(2006).

    [8] S A Diddams. The evolving optical frequency comb [invited]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [9] S A Diddams, K Vahala, T Udem. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [10] P Del’Haye, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [11] N Picqué, T W Hänsch. Frequency comb spectroscopy. Nature Photonics, 13, 146-157(2019).

    [12] G Ycas, F R Giorgetta, E Baumann, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nature Photonics, 12, 202-208(2018).

    [13] I Coddington, N Newbury, W Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [14] G Millot, S Pitois, M Yan, et al. Frequency-agile dual-comb spectroscopy. Nature Photonics, 10, 27-30(2016).

    [15] M G Suh, Q F Yang, K Y Yang, et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [16] T Yasui, S Yokoyama, H Inaba, et al. Terahertz frequency metrology based on frequency comb. IEEE Journal of Selected Topics in Quantum Electronics, 17, 191-201(2011).

    [17] J Ye, H Schnatz, L W Hollberg. Optical frequency combs: From frequency metrology to optical phase control. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1041-1058(2003).

    [18] K Yoshii, J Nomura, K Taguchi, et al. Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation. Physical Review Applied, 11, 054031(2019).

    [19] M G Suh, K J Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [20] P Trocha, M Karpov, D Ganin, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [21] P Marin-Palomo, J N Kemal, M Karpov, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [22] B Corcoran, M X Tan, X Y Xu, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nature Communications, 11, 7(2020).

    [23] H Hu, L K Oxenlowe. Chip-based optical frequency combs for high-capacity optical communications. Nanophotonics, 10, 1367-1385(2021).

    [24] J Q Liu, E Lucas, A S Raja, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photonics, 14, 486-491(2020).

    [25] G B Rieker, F R Giorgetta, W C Swann, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290-298(2014).

    [26] S X Zhao, Q W Liu, Z Y He. Multi-tone Pound-Drever-Hall technique for high-resolution multiplexed Fabry-Perot resonator sensors. Journal of Lightwave Technology, 38, 6379-6384(2020).

    [27] A V Muraviev, V O Smolski, Z E Loparo, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nature Photonics, 12, 209-214(2018).

    [28] T Fortier, E Baumann. 20 years of developments in optical frequency comb technology and applications. Communications Physics, 2, 153(2019).

    [29] M Kues, C Reimer, J M Lukens, et al. Quantum optical microcombs. Nature Photonics, 13, 170-179(2019).

    [30] J Kim, Y J Song. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications. Advances in Optics and Photonics, 8, 465-540(2016).

    [31] T Herr, V Brasch, J D Jost, et al. Temporal solitons in optical microresonators. Nature Photonics, 8, 145-152(2013).

    [32] V Brasch, M Geiselmann, T Herr, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [33] B Stern, X C Ji, Y Okawachi, et al. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [34] D C Cole, E S Lamb, P Del'Haye, et al. Soliton crystals in Kerr resonators. Nature Photonics, 11, 671-676(2017).

    [35] M Sich, D N Krizhanovskii, M S Skolnick, et al. Observation of bright polariton solitons in a semiconductor microcavity. Nature Photonics, 6, 50-55(2012).

    [36] X X Xue, Y Xuan, Y Liu, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 9, 594-600(2015).

    [37] T Herr, K Hartinger, J Riemensberger, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 6, 480-487(2012).

    [38] C Godey, I V Balakireva, A Coillet, et al. Stability analysis of the spatiotemporal lugiato-lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Physical Review A, 89, 063814(2014).

    [39] W Wang, L Wang, W Zhang. Advances in soliton microcomb generation. Advanced Photonics, 2, 034001(2020).

    [40] T Herr, V Brasch, J D Jost, et al. Temporal solitons in optical microresonators. Nature Photonics, 8, 145-152(2014).

    [41] L Lundberg, M Karlsson, A Lorences-Riesgo, et al. Frequency comb-based WDM transmission systems enabling joint signal processing. Applied Sciences, 8, 718(2018).

    [42] A Rueda, F Sedlmeir, M Kumari, et al. Resonant electro-optic frequency comb. Nature, 568, 378-381(2019).

    [43] L Chang, S Liu, J E Bowers. Integrated optical frequency comb technologies. Nature Photonics, 16, 95-108(2022).

    [44] B Buscaino, M Zhang, M Loncar, et al. Design of efficient resonator-enhanced electro-optic frequency comb generators. Journal of Lightwave Technology, 38, 1400-1413(2020).

    [45] C Wang, M Zhang, X Chen, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [46] M Y Xu, M B He, Y T Zhu, et al. Flat optical frequency comb generator based on integrated lithium niobate modulators. Journal of Lightwave Technology, 40, 339-345(2022).

    [47] T H Ren, M Zhang, C Wang, et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technology Letters, 31, 889-892(2019).

    [48] N Andriolli, T Cassese, M Chiesa, et al. Photonic integrated fully tunable comb generator cascading optical modulators. Journal of Lightwave Technology, 36, 5685-5689(2018).

    [49] R Slavik, S G Farwell, M J Wale, et al. Compact optical comb generator using InP tunable laser and push-pull modulator. IEEE Photonics Technology Letters, 27, 217-220(2015).

    [50] N Yokota, H Yasaka. Operation strategy of InP Mach-Zehnder modulators for flat optical frequency comb generation. IEEE Journal of Quantum Electronics, 52, 1-7(2016).

    [51] K P Nagarjun, V Jeyaselvan, S K Selvaraja, et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt Express, 26, 10744-10753(2018).

    [52] K P Nagarjun, P Raj, V Jeyaselvan, et al. Microwave power induced resonance shifting of silicon ring modulators for continuously tunable, bandwidth scaled frequency combs. Opt Express, 28, 13032-13042(2020).

    [53] S Liu, K Wu, L Zhou, et al. Repetition-frequency-doubled transform-limited optical pulse generation based on silicon modulators. Journal of Lightwave Technology, 38, 6299-6311(2020).

    [54] F Pockels. Ueber den einfluss elastischer deformationen, speciell einseitigen druckes, auf das optische verhalten krystallinischer körper. Annalen der Physik, 273, 144-172(1889).

    [55] A Parriaux, K Hammani, G Millot. Electro-optic frequency combs. Advances in Optics and Photonics, 12, 223-287(2020).

    [56] M Imran, P M Anandarajah, A Kaszubowska-Anandarajah, et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks. IEEE Communications Surveys & Tutorials, 20, 211-263(2018).

    [57] B Pile, G Taylor. Small-signal analysis of microring resonator modulators. Optics Express, 22, 14913-14928(2014).

    [58] W D Sacher, W M J Green, D M Gill, et al. Binary phase-shift keying by coupling modulation of microrings. Optics Express, 22, 20252-20259(2014).

    [59] Y F Qi, Y Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [60] M Kourogi, K Nakagawa, M Ohtsu. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE Journal of Quantum Electronics, 29, 2693-2701(1993).

    [61] L R Brothers, N C Wong. Dispersion compensation for terahertz optical frequency comb generation. Optics Letters, 22, 1015-1017(1997).

    [62] M Bruel. Silicon on insulator material technology. Electronics Letters, 31, 1201-1202(1995).

    [63] M Levy, R M Osgood, R Liu, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Applied Physics Letters, 73, 2293-2295(1998).

    [64] G Poberaj, H Hu, W Sohler, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser & Photonics Reviews, 6, 488-503(2012).

    [65] J Lin, F Bo, Y Cheng, et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Research, 8, 1910-1936(2020).

    [66] D Zhu, L B Shao, M J Yu, et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 13, 242-352(2021).

    [67] M Zhang, B Buscaino, C Wang, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [68] M Xu, M He, Y Zhu, et al. Integrated thin film lithium niobate Fabry–Perot modulator [invited]. Chinese Optics Letters, 19, 060003(2021).

    [69] J He, Y Li. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR. Opt Express, 28, 30771-30783(2020).

    [70] F Zafar, A Iqbal. Indium phosphide nanowires and their applications in optoelectronic devices. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 472, 18(2016).

    [71] van der J J G M Tol, Y Jiao, L Shen, et al. Indium phosphide integrated photonics in membranes. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-9(2018).

    [72] Z Wang, B Tian, M Pantouvaki, et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 9, 837-842(2015).

    [73] L Shen, Y Jiao, W Yao, et al. High-Bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform. Optics Express, 24, 8290-8301(2016).

    [74] Y Xue, Y Han, Y Tong, et al. High-performance III-V photodetectors on a monolithic InP/SOI platform. Optica, 8, 1204-1209(2021).

    [75] N L K Nguyen, D P Nguyen, A N Stameroff, et al. A 1-160-GHz InP distributed amplifier using 3-D interdigital capacitors. IEEE Microwave and Wireless Components Letters, 30, 492-495(2020).

    [76] T Liu, F Pagliano, Veldhoven R van, et al. Low-voltage MEMS optical phase modulators and switches on a indium phosphide membrane on silicon. Applied Physics Letters, 115, 251104(2019).

    [77] A A Kashi, van der J J G M Tol, K A Williams, et al. Electro-optic slot waveguide phase modulator on the InP membrane on silicon platform. IEEE Journal of Quantum Electronics, 57, 1-10(2021).

    [78] A Betancur-Perez, P Martin-Mateos, C Dios, et al. Design of a multipurpose photonic chip architecture for THz Dual-Comb spectrometers. Sensors, 20, 6089(2020).

    [79] D P Liu, J Tang, Y Meng, et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator. Journal of Semiconductors, 42, 082301(2021).

    [80] F Bontempi, N Andriolli, F Scotti, et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-7(2019).

    [81] B Jalali, S Fathpour. Silicon photonics. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [82] M Bruel, B Aspar, A J Auberton-Herve. Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 36, 1636-1641(1997).

    [83] B Aspar, H Moriceau, E Jalaguier, et al. The generic nature of the smart-cut® process for thin film transfer. Journal of Electronic Materials, 30, 834-840(2001).

    [84] D Thomson, A Zilkie, J E Bowers, et al. Roadmap on silicon photonics. Journal of Optics, 18, 073003(2016).

    [85] W Bogaerts, L Chrostowski. Silicon photonics circuit design: Methods, tools and challenges. Laser & Photonics Reviews, 12, 1700237(2018).

    [86] Y Arakawa, T Nakamura, Y Urino, et al. Silicon photonics for next generation system integration platform. IEEE Communications Magazine, 51, 72-77(2013).

    [87] R Marchetti, C Lacava, L Carroll, et al. Coupling strategies for silicon photonics integrated chips [invited]. Photonics Research, 7, 201-239(2019).

    [88] H Lin, Z Luo, T Gu, et al. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics, 7, 393-420(2018).

    [89] S Y Siew, B Li, F Gao, et al. Review of silicon photonics technology and platform development. Journal of Lightwave Technology, 39, 4374-4389(2021).

    [90] C H Lee, R K Chang, N Bloembergen. Nonlinear electroreflectance in silicon and silver. Physical Review Letters, 18, 167-170(1967).

    [91] Z Chen, J Zhao, Y Zhang, et al. Pockel’s effect and optical rectification in (111)-cut near-intrinsic silicon crystals. Applied Physics Letters, 92, 251111(2008).

    [92] X Wu, K Xu, W Zhou, et al. Scalable ultra-wideband pulse generation based on silicon photonic integrated circuits. IEEE Photonics Technology Letters, 29, 1896-1899(2017).

    [93] L Deniel, E Weckenmann, Galacho D Pérez, et al. Silicon photonics phase and intensity modulators for flat frequency comb generation. Photonics Research, 9, 2068-2076(2021).

    [94] Z Wang, M Ma, H Sun, et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators. IEEE Journal of Quantum Electronics, 55, 1-6(2019).

    [95] M Lipson. Compact electro-optic modulators on a silicon chip. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1520-1526(2006).

    [96] Y Xu, J Lin, R Dube-Demers, et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators. Opt Lett, 43, 1554-1557(2018).

    [97] S Liu, K Wu, L Zhou, et al. Microwave pulse generation with a silicon Dual-Parallel modulator. Journal of Lightwave Technology, 38, 2134-2143(2020).

    [98] L Deniel, E Weckenmann, Galacho D Pérez, et al. Frequency-tuning dual-comb spectroscopy using silicon mach-zehnder modulators. Optics Express, 28, 10888-10898(2020).

    [99] I Demirtzioglou, C Lacava, K R H Bottrill, et al. Frequency comb generation in a silicon ring resonator modulator. Opt Express, 26, 790-796(2018).

    [100] Khalil M, Maram R, Naghdi B, et al. Electrooptic frequency comb generation using caded silicon micring modulats [C] Proceedings of the OSA Advanced Photonics Congress (AP), 2020.

    [101] A S Kowligy, D R Carlson, D D Hickstein, et al. Mid-infrared frequency combs at 10 GHz. Opt Lett, 45, 3677-3680(2020).

    [102] C Weimann, P C Schindler, R Palmer, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 22, 3629-3637(2014).

    [103] P Jiang, K C Balram. Suspended gallium arsenide platform for building large scale photonic integrated circuits: Passive devices. Opt Express, 28, 12262-12271(2020).

    [104] A Pasquazi, M Peccianti, L Razzari, et al. Micro-combs: A novel generation of optical sources. Physics Reports, 729, 1-81(2018).

    [105] J Roslund, Araújo R M de, S Jiang, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nature Photonics, 8, 109-112(2014).

    [106] J Pfeifle, V Brasch, M Lauermann, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 8, 375-380(2014).

    [107] J Pfeifle, V Vujicic, R T Watts, et al. Flexible terabit/s nyquist-wdm super-channels using a gain-switched comb source. Optics Express, 23, 724-738(2015).

    [108] M Doi, M Sugiyama, K Tanaka, et al. Advanced LiNbO3 optical modulators for broadband optical communications. IEEE Journal of Selected Topics in Quantum Electronics, 12, 745-750(2006).

    [109] X Li, M Wang, J Li, et al. Monolithic 1×4 reconfigurable electro-optic tunable interleaver in lithium niobate thin film. IEEE Photonics Technology Letters, 31, 1611-1614(2019).

    [110] N Dupuis, C R Doerr, L M Zhang, et al. InP-based comb generator for optical OFDM. Journal of Lightwave Technology, 30, 466-472(2012).

    [111] J C Lin, H Sepehrian, Y L Xu, et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technology Letters, 30, 1495-1498(2018).

    [112] A Cingöz, D C Yost, T K Allison, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature, 482, 68-71(2012).

    [113] T Ideguchi, A Poisson, G Guelachvili, et al. Adaptive real-time dual-comb spectroscopy. Nature Communications, 5, 3375(2014).

    [114] A Dutt, C Joshi, X Ji, et al. On-chip dual-comb source for spectroscopy. Science Advances, 4, e1701858(2018).

    [115] M Yu, Y Okawachi, A G Griffith, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nature Commu-nications, 9, 1869(2018).

    [116] A Shams-Ansari, M Yu, Z Chen, et al. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Communications Physics, 5, 88(2022).

    CLP Journals

    [1] Yaohu Cui, Zixiong Wang, Yitong Xu, Xunhe Zuo, Yang Jiang, Jinlong Yu, Zhanhua Huang. Approach to generation of flat optical frequency comb using cascaded phase modulator and intensity modulator[J]. Infrared and Laser Engineering, 2023, 52(5): 20220756

    Pengfei Liu, Linhao Ren, Hao Wen, Lei Shi, Xinliang Zhang. Progress in integrated electro-optic frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220381
    Download Citation