• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1900004 (2022)
Gang Cheng1、2、3、*, Zhenxue Wang1, Honghu Zhu2, Dongyan Li1, and Qian Ma2
Author Affiliations
  • 1School of Computer Science, North China Institute of Science and Technology (National Safety Training Center of Coal Mines), Beijing 101601, China
  • 2School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
  • 3Nanjing University High-Tech Institute at Suzhou, Suzhou 215123, Jiangsu, China
  • show less
    DOI: 10.3788/LOP202259.1900004 Cite this Article Set citation alerts
    Gang Cheng, Zhenxue Wang, Honghu Zhu, Dongyan Li, Qian Ma. Research Review of Rock and Soil Deformation Monitoring Based on Distributed Fiber Optic Sensing[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900004 Copy Citation Text show less
    High frequency keyword spectrum of rock and soil mass deformation monitoring
    Fig. 1. High frequency keyword spectrum of rock and soil mass deformation monitoring
    Typical classification of DFOS[4]
    Fig. 2. Typical classification of DFOS[4]
    Measuring principle of FBG technology[16]
    Fig. 3. Measuring principle of FBG technology[16]
    Geotextiles embedded with nylon fiber optic[20]
    Fig. 4. Geotextiles embedded with nylon fiber optic[20]
    Measurement principle of BOTDR technology[22]
    Fig. 5. Measurement principle of BOTDR technology[22]
    Measurement principle of BOTDA technology [26]
    Fig. 6. Measurement principle of BOTDA technology [26]
    Measurement principle of BOFDA technology[28]
    Fig. 7. Measurement principle of BOFDA technology[28]
    Measurement principle of DAS technology[31]
    Fig. 8. Measurement principle of DAS technology[31]
    Principle of temperature self-compensation sensor[36]
    Fig. 9. Principle of temperature self-compensation sensor[36]
    Refer to the fiber optic supplement method for fiber optic layout[18]
    Fig. 10. Refer to the fiber optic supplement method for fiber optic layout[18]
    BOTDR temperature-compensating fiber optic layout[40]
    Fig. 11. BOTDR temperature-compensating fiber optic layout[40]
    Coupling process model of fiber-sand[45]
    Fig. 12. Coupling process model of fiber-sand[45]
    Controlled pressure cable-rock and soil mass coupling test device[46]
    Fig. 13. Controlled pressure cable-rock and soil mass coupling test device[46]
    Attachment type layout technology. (a) Anchorage bolt and steel structure sticking arrangement method; (b) PHC pile grooves and concrete pre-embedded placement method[48]
    Fig. 14. Attachment type layout technology. (a) Anchorage bolt and steel structure sticking arrangement method; (b) PHC pile grooves and concrete pre-embedded placement method[48]
    Embedded layout technology. (a) Excavation trench layout method; (b) borehole implantable layout method
    Fig. 15. Embedded layout technology. (a) Excavation trench layout method; (b) borehole implantable layout method
    Slope engineering monitoring system based on fiber optic sensing technology[57]
    Fig. 16. Slope engineering monitoring system based on fiber optic sensing technology[57]
    Flow chart of combined prediction model[59]
    Fig. 17. Flow chart of combined prediction model[59]
    Volute fiber optic layout scheme[62]
    Fig. 18. Volute fiber optic layout scheme[62]
    Practical application of fiber optic sensing in tunnel[65]
    Fig. 19. Practical application of fiber optic sensing in tunnel[65]
    Monitoring type of shield tunnel[66]
    Fig. 20. Monitoring type of shield tunnel[66]
    Subgrade collapse monitoring[71]
    Fig. 21. Subgrade collapse monitoring[71]
    Pipeline structure state monitoring and evaluation process[72]
    Fig. 22. Pipeline structure state monitoring and evaluation process[72]
    Fiber optic monitoring layout scheme for buried pipeline[74]
    Fig. 23. Fiber optic monitoring layout scheme for buried pipeline[74]
    Railway engineering monitoring scheme integrating DAS and AI[78]
    Fig. 24. Railway engineering monitoring scheme integrating DAS and AI[78]
    SensorMonitoring contentParameter index
    FBG(string)Structural internal forceStructural strainTemperature measurementSize: 0.25 mm×10 mmSpacing: 20 mmPrecision: 1 με,0.1 ℃
    Micro FBGpressure sensorSoil pressureSize: 40 mm×16 mmRange: 200-3000 kPaPrecision: 0.1%F.S.Wavelength: 1528-1568 nmReflectivity: ≥90
    Micro FBG displacement sensorCompression of soil Structural displacement Soil settlement gageSize: 6 mm×170 mmRange: 10-150 mmPrecision: 0.1%F.S.Resolution: 0.05%F.S.Wavelength: 1510-1590 nmReflectivity: ≥90
    FBG temperature sensorTemperature measurementRange: -40-200 ℃Resolution: 0.1 ℃Wavelength: 1510-1590 nmReflectivity: ≥90
    Table 1. Mini FBG sensor performance parameters
    Fiber optic sensing technology

    Measurement

    distance

    Strain measurement rangeMeasurement precision

    Space

    resolution

    Measurement

    time

    Commercialized products
    DeviceParameters
    FBGSeries length-3000-+5000 με1 με/0.1 ℃-1-60 sNZS-FBG-A03Wavelength range:1528-1568 nmWavelength resolution: 1 pmRepeatability: ±2 pmDemodulation speed: ≥1 HzDynamic range: 45 dBWorking temperature: -5-45 ℃
    OTDR256 km--0.1 m1-5 sFOT-100Pulse width: S/A 5 ns-10 μs, S/B 5 ns-20 μs, MM-A: S/A 5 ns-1 μsDistance resolution: 0.1 mLoss resolution: 0.001 dB
    BOTDR80 km-15000-+15000 με30 με/1 ℃0.5 m5 minAV6419Space resolution: 1 mSampling resolution: 0.05 mFrequency scan range: 9.9-12 GHzDemodulation repeatability: ±10 με
    BOTDA30 km-15000-+15000 με7 με/0.3 ℃0.02 m10 minRP 1000Space resolution: 0.02 mFrequency scan range: 10-13 GHzStrain testrepeatability: <±4 μεSampling resolution: 0.01 m
    BOFDA50 km-15000-+15000 με2 με/0.1 ℃0.2 m3 minfTB2505Space resolution: 0.2 mFrequency scan range: 9.9-13 GHzStrain testrepeatability: <±4 μεSampling resolution: 0.05 m
    DAS50 km--2-10 m-MS-DASSampling resolution: 0.1 mFrequency scan range: 0-50 kHzSensitivity: <0.05 nε@5-100 HzTiming accuracy: 1 μsWorking temperature: 0-40 ℃
    Table 2. Comparison of several typical fiber optic technical parameters and technical indicators of main commercial equipment
    Gang Cheng, Zhenxue Wang, Honghu Zhu, Dongyan Li, Qian Ma. Research Review of Rock and Soil Deformation Monitoring Based on Distributed Fiber Optic Sensing[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900004
    Download Citation