• Laser & Optoelectronics Progress
  • Vol. 50, Issue 5, 50002 (2013)
Jin Xiaofeng1、*, Zhang Peng1, Liu Chunhua1, Sun Jianfeng2, and Liu Liren2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop50.050002 Cite this Article Set citation alerts
    Jin Xiaofeng, Zhang Peng, Liu Chunhua, Sun Jianfeng, Liu Liren. Techniques on Long-Range and High-Resolution Imaging Lidar[J]. Laser & Optoelectronics Progress, 2013, 50(5): 50002 Copy Citation Text show less
    References

    [1] Joseph W. Goodman. Introduction to Fourier Optics (3rd ed.)[M]. Qin Kecheng, Liu Peisen, Chen Jiabi et al. Transl. Beijing: Publishing House of Electronics Industry, 2011

    [2] Sun Jianfeng, Yan Aimin, Liu Dean et al.. Progress on long-range laser imaging ladar[J]. laser & Optoelectronics Progress, 2009, 46(8): 49~54

    [3] Liu Liren. Synthetic aperture laser imaging radar (Ⅰ): defocused and phase-biased telescope for reception antenna[J]. Acta Optica Sinica, 2008, 28(5): 997~1000

    [4] Liu Liren. Synthetic-aperture ladar (Ⅱ): spatial phase biased telescope for transmitting antenna[J]. Acta Optica Sinica, 2008, 28(6): 1197~1200

    [5] Liu Liren. Synthetic aperture ladar (Ⅲ): circulated duplex telescope[J]. Acta Optica Sinica, 2008, 28(7): 1405~1410

    [6] Liu Liren. Synthetic aperture imaging ladar (Ⅳ): unified operation mode and two-dimensional data collection equation[J]. Acta Optica Sinica, 2009, 29(1): 1~6

    [7] Liu Liren. Synthetic aperture imaging ladar (V): imaging resolution and antenna aperture function[J]. Acta Optica Sinica, 2009, 29(5): 1408~1415

    [8] Liu Liren. Synthetic aperture imaging ladar (VI): space-time speckle effect and heterodyne signal-to-noise ratio[J]. Acta Optica Sinica, 2009, 29(8): 2326~2332

    [9] J. C. Curlander, R. N. Mcdonough. Synthetic Aperture Radar: Systems and Signal Processing[M]. Han Chuanzhao Transl.. Publishing House of Electronics Industry. 2006

    [10] M. Bashkansky, R. L. Lucke, E. Funk et al.. Two-dimensional synthetic aperture imaging in the optical domain[J]. Opt. Lett., 2002, 27(22): 1983~1985

    [11] M. L. Bashkansky, L. Robert, Lee J. Rickard et al.. Synthetic Aperture Ladar (SAL): Fundamental Theory, Design Equations for a Satellite System, and Laboratory Demonstration[R]. Naval Research Laboratory Report NRL/FR/7218-02-10

    [12] S. M. Beck, J. R. Buck, W. F. Buell et al.. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Appl. Opt., 2005, 44(35): 7621~7629

    [13] W. Buell, N. Marechal, J. Buck et al.. Demonstration of synthetic aperture imaging ladar[C]. SPIE, 2005, 5791: 152~166

    [14] J. Ricklin, M. Dierking, S. Fuhrer et al.. Synthetic Aperture Ladar for Tactical Imaging[R]. DARPA Straegic Technology Office, 2007

    [15] J. C. Ricklin, P. G. Tomlinson. Active Imaging at DARPA[C]. SPIE, 2005, 5895: 589505

    [16] J. R. Buck, B. W. Krause, A. I. R. Malm et al.. Synthetic aperture imaging at optical wavelengths[C]. OSA/CLEO/IQEC, 2009. PTHB3

    [17] D. J. Philip Gatt, Bert Bradford, Joe Marron et al.. Performance bounds of the phase gradeint autofocus algorithm for synthetic aperture ladar[C]. SPIE, 2009, 7323: 73230P

    [18] Brian W. Krause, J. Buck, Chris Ryan et al.. Synthetic aperture ladar flight demonstration[C]. OSA/CLEO, 2011. PDPB7

    [19] Li Fan, Wu Shuangyang, Zheng Yongchao et al.. Overview of the development of synthetic aperture lidar[J]. Infrared and Laser Engineering, 2006, 35(1): 55~65

    [20] Yang Lin. Research of Key Techniques of Synthetic Aperture Lidar[D]. Chengdu: University of Electronic Science and Technology of China, 2008

    [21] Zhang Yun. Synthetic Aperture Ladar[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2006

    [22] Deng Yili. Study on Synthetic Aperture Ladar Technology[D]. Xi′an: Xidian University, 2008

    [23] Guo Liang. Study on Experiment and Algorithm of Synthetic Aperture Imaging Lidar[D]. Xi′an: Xidian University, 2009

    [24] Bureau of High-Tech Research and Development Chinese Academy of Sciences. Special edition of Space Optical and Electrical Technology (Issue of Synthetic Aperture Lidar Techniques)[C]. 2007

    [25] Liu Liren, Zhou Yu, Zhi Ya′nan et al.. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 2011, 31(9): 0900112

    [26] Liu Liren. Fresnel telescope full-aperture synthesized imaging ladar: principle[J]. Acta Optica Sinica, 2011, 31(1): 0128001

    [27] Zhou Yu, Sun Jianfeng, Luan Zhu et al.. Aperture-synthesizing experiment of a down-scaled synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2008, 28(12): 2446~2448

    [28] Zhou Yu, Xu Nan, Luan Zhu et al.. 2D imaging experiment of a 2D target in a laboratory-scale synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2009, 29(7): 2030~2032

    [29] Yu Zhou, Aimin Yan, Nan Xu et al.. A multi-purpose SAIL demostrator design and its principle experimental verfication[C]. SPIE, 2009, 7468: 74680S

    [30] Yu Zhou, Yanan Zhi, Aimin Yan et al.. A synthetic aperture imaging ladar demonstrator with 300 mm antenna and changeable footprint[C]. SPIE, 2010, 7818: 78180T

    [31] Dai Enwen, Sun Jianfeng, Yan Aimin et al.. Demonstration of a laboratory Fresnel telescope synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2012, 32(5): 0528003

    [32] R. M. Marino, R. N. Capes, J. K. Parker et al.. Tomographic image reconstruction from laser radar reflective projections[C]. SPIE, 1988, 999: 248~263

    [33] J. K. Parker, E. B. Cralg, D. I. Klick et al.. Reflective tomography: image from range-resolved laser radar measurements[J]. Appl. Opt., 1988, 27(13): 2642~2643

    [34] F. K. Knight, D. Klick, D. P. Ryan-Howard et al.. Laser radar reflective tomography utilizing a steak camera for precise range resolution[J]. Appl. Opt., 1989, 28(12): 2196~2198

    [35] F. K. Knight, D. I. Klick, D.P. Ryan-Howard et al.. Visible laser radar: range tomography and angle-angle-range detection[J]. Opt. Engng., 1991, 30(1): 55~65

    [36] C. L. Matson, E. P. Magee, D. H. Stone. Reflective tomography for space object imaging using a short-pulselength laser[C]. SPIE, 1994, 2302: 73~82

    [37] E. P. Magee, C. L. Matson, D. H. Stone. Comparison of techniques for image reconstruction using tomography[C]. SPIE, 1994, 2302: 95~102

    [38] C. L. Matson, E. P. Magee, Donald E. Holland. Reflective tomography using a short pulse-length laser: system analysis for artificial satellite imaging[J]. Opt. Eng., 1995, 34(9): 2811~2820

    [39] C. L. Matson. Tomographic satellite image reconstruction using ladar E-field or intensity projections: computer simulation results[C]. SPIE, 1995, 2566: 166~176

    [40] C. L. Matson, J. K. Boger. Laboratory validation of heterodyne laser radar signal-to-noise expressions for intensity projection generation and image reconstruction[C]. SPIE, 1995, 2562: 195~202

    [41] C. L. Matson. Reconstructed image signal-to-noise issues in range-resolved reflective tomography[J]. Opt. Commun., 1997, 137(4-6): 343~358

    [42] James B. Lasché, C. L. Matson, Stephen D. Ford et al.. Reflective tomographt for imaging satellites experimental results[C]. SPIE, 1999, 3815: 178~188

    [43] C. L. Matson, D. E. Mosley. Reflective tomography reconstruction of satellite features: field results[J]. Appl. Opt., 2001, 40(14): 2290~2296

    [44] James Murray, Gregory Fetzer, Ryan Epstein et al.. Tomographic Lidar[C]. OSA/ASSP/LACSEA/LS&C, 2010, LSWA1

    [45] N. Takeuchi, N. Sugimoto, H. Baba et al.. Random modulation CW lidar[J]. Appl. Opt., 1983, 22(9): 1382~1386

    [46] N. Takeuchi, H. Baba, K. Sakurai et al.. Diode-laser random-modulation CW lidar[J]. Appl. Opt., 1986, 25(1): 63~67

    [47] C. Nagasawa, M. Abo, H. Yamamoto et al.. Random modulation CW lidar using new random sequence[J]. Appl. Opt., 1990, 29(10): 1466~1470

    [48] Hyo Sang Lee, Ravi Ramaswami. Study of pseudo-noise CW diode laser for ranging applications[C]. SPIE, 1992, 1829: 36~45

    [49] S. D. Ford, C. L. Matson. Projection registration in reflective tomography[C]. SPIE, 1999, 3815: 189~198

    [50] Jin Xiaofeng. Research on Key Technologies of Imaging Ladar Based on CT Principles[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2012

    [51] Chengqiang Zhao, Wenlin Gong, Mingliang Chen et a.. Ghost imaging lidar via sparsity constraints[J]. Appl. Phys. Lett., 2012, 101(14): 141123

    [52] W. Gong, P. Zhang, X. Shen et al.. Ghost ‘pinhole’ imaging in Fraunhofer region[J]. Appl. Phys. Lett., 2009, 95(7): 071110

    [53] W. Gong, S. Han. Lens ghost imaging with thermal light: from the far field to the near field[J]. Phys. Lett. A, 2010, 374: 3723~3725

    [54] O. Katz, Y. Bromberg, Y. Silberberg. Compressive ghost imaging[J]. Appl. Phys. Lett., 2009, 95(13): 131110

    [55] E. J. Candes, M. B. Wakin. An introduction to compressive sampling[J]. IEEE Signal Process., 2008, 25: 21~30

    [56] W. Gong, S. Han. Super-Resolution Far-Field Ghost Imaging via Compressive Sampling[OL]. e-print arXiv: 0911.4750 [Quant-ph]

    [57] S. Gazit, A. Szameit, Y. C. Eldar et al.. Super-resolution and reconstruction of sparse sub-wavelength images[J]. Opt. Express, 2009, 17(26): 23920~23946

    [58] Y. Shechtman, S. Gazit, A. Szameit et al.. Super-resolution and reconstruction of sparse images carried by incoherent light[J]. Opt. Lett., 2010, 35(8): 1148~1150

    [59] J. Du, W. Gong, S. Han. The influence of sparsity property of images on ghost imaging with thermal light[J]. Opt. Lett., 2012, 37(6): 1067~1069

    [60] Hui Wang, Shensheng Han, Mikhail I. Kolobov. Quantum limits of super-resolution via sparsity constraint[J]. Opt. Express, 2012, 20(21): 23235~23252

    [61] J. Cheng. Ghost imaging through turbulent atmosphere[J]. Opt. Express, 2009, 17(10): 7916~7921

    [62] P. Zhang, W. Gong, X. Shen et al.. Correlated imaging through atmospheric turbulence[J]. Phys. Rev. A, 2010, 82(3): 033817

    [63] P. B. Dixon, G. A. Howland, K. W. C. Chan et al.. Quantum ghost imaging through turbulence[J]. Phys. Rev. A, 2011, 84(5): 051803R

    [64] N. D. Hardy, J. H. Shapiro. Reflective ghost imaging through turbulence[J]. Phys. Rev. A, 2011, 84(6): 063824

    [65] R. E. Meyers, K. S. Deacon, Y. Shih. Turbulence free ghost imaging[J]. Appl. Phys. Lett., 2011, 98(11): 111115

    [66] Sanjit Karmakar, Ronald E. Meyers, Yanhua Shih. The first observation of a ghost image with sun light[C]. SPIE, 2012, 8518: 851805

    [67] Hu Li, Zhipeng Chen, Jin Xiong et al.. Periodic diffraction correlation imaging without a beam-splitter[J]. Opt. Express, 2012, 20(3): 2956~2966

    [68] Chen Mingliang, Li Enrong, Wang Hui et al.. Ghost imaging based on sparse array pseudothermal light system[J]. Acta Optica Sinica, 2012, 32(5): 0503001

    CLP Journals

    [1] YANG Biao, HU Yi-hua, LIN Fang. Research of Phase Retrieval Method in Laser Reflective Tomography Imaging[J]. Acta Photonica Sinica, 2018, 47(4): 407001

    [2] Gu Yu, Hu Yihua, Hao Shiqi, Wang Jincheng, Wang Di. Application of Variational Bayesian Deconvolution Method in Laser Reflective Tomography Imaging[J]. Acta Optica Sinica, 2016, 36(6): 611003

    [3] Zhao Nanxiang, Hu Yihua. Research of phase retrieval algorithm in laser reflective tomography imaging[J]. Infrared and Laser Engineering, 2019, 48(10): 1005005

    [4] Ren Lei, Zhao Dongfeng, Zhu Jianqiang. Advances in Target and Beam Alignment Unit Technologies of High Power Laser Drivers[J]. Collection Of theses on high power laser and plasma physics, 2014, 12(1): 80001

    Jin Xiaofeng, Zhang Peng, Liu Chunhua, Sun Jianfeng, Liu Liren. Techniques on Long-Range and High-Resolution Imaging Lidar[J]. Laser & Optoelectronics Progress, 2013, 50(5): 50002
    Download Citation