• Chinese Journal of Quantum Electronics
  • Vol. 36, Issue 6, 732 (2019)
Kechao LI1、2、*, Lin YANG2, Kai GUO2, Xiaofei QU1、2, Yi’ning CAO2, and Junhua WANG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2019.06.015 Cite this Article
    LI Kechao, YANG Lin, GUO Kai, QU Xiaofei, CAO Yi’ning, WANG Junhua. Output characterization for correlated photon-pair sources using silicon micro-ring resonators[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 732 Copy Citation Text show less
    References

    [1] Michael K, Christian R, Joseph M L, et al. Quantum optical microcombs [J]. Nature Photonics, 2019, 4(13): 170-179.

    [2] Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics [J]. Nature, 2001, 409(6816): 46-52.

    [3] Gisin N, Thew R. Quantum communication [J]. Nature Photonics, 2006, 55(2): 298-303.

    [4] Clemmen S, Phan H K, Bogaerts W, et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators [J]. Optics Express, 2009, 17 (19): 16558-16570.

    [5] Sipe J E, Helt L G, Liscidini M, et al. Spontaneous four-wave mixing in micro-ring resonators [J]. Optics Letters, 2010, 35(18): 3006-3008.

    [6] Azzini S, Grassani D, Galli M, et al. From classical four-wave mixing to parametric fluorescence in silicon microring resonators [J]. Optics Letters, 2012, 37(18): 3807-3809.

    [8] Guo Y, Zhang W, Lv N, et al. The impact of nonlinear losses in the silicon microring cavities on CW pumping correlated photon pair generation [J]. Optics Express, 2014, 22(3): 2620-2631.

    [9] Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters [J]. Journal of Lightwave Technology, 1997, 15(6): 998-1005.

    [10] Xiao S, Khan M H, Shen H, et al. Compact silicon microring resonators with ultralow propagation loss in the C band. [J]. Optics Express, 2007, 15(22): 14467-14475.

    [11] Li Y, Maslov A V, Limberopoulos N I, et al. Spectrally resolved resonant propulsion of dielectric microspheres [J]. Laser and Photonics Reviews, 2015, 9(2): 263-273.

    [12] Rong H, Liu A, Nicolaescu R, et al. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide [J]. Applied Physics Letters, 2004, 85(12): 2196-2198.

    [13] Dimitropoulos D, Jhaveri R, Claps R, et al. Lifetime of photogenerated carriers in silicon-on-insulator rib wave-guides [J]. Applied Physics Letters, 2005, 8(7): 711151.

    [14] Hu H, Palushani E, Galili M, et al. 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion [J]. Optics Express, 2010, 18(10): 9961-9966.

    [15] Gorin A, Jaouad A, Grondin E, et al. Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties [J]. Optics Express, 2008, 1(18): 13509-13516.

    [16] Noborisaka J, Motohisa J, Hara S, et al. Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy [J]. Applied Physics Letters, 2005, 87(9): 093109.

    [17] Sun X H, Li C P, Wong W K, et al. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes [J]. Journal of the American Chemical Society, 2002, 124(48): 14464-14471.

    LI Kechao, YANG Lin, GUO Kai, QU Xiaofei, CAO Yi’ning, WANG Junhua. Output characterization for correlated photon-pair sources using silicon micro-ring resonators[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 732
    Download Citation