• Photonics Research
  • Vol. 11, Issue 10, 1713 (2023)
Zhiyong Jin1,†, Heming Huang2,†, Yueguang Zhou3, Shiyuan Zhao2..., Shihao Ding2, Cheng Wang4, Yong Yao1, Xiaochuan Xu1, Frédéric Grillot2,5 and Jianan Duan1,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory on Tunable Laser Technology, School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
  • 2LTCI, Telecom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
  • 3DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
  • 4School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 5Center for High Technology Materials, The University of New-Mexico, Albuquerque, New Mexico 87106, USA
  • show less
    DOI: 10.1364/PRJ.494393 Cite this Article Set citation alerts
    Zhiyong Jin, Heming Huang, Yueguang Zhou, Shiyuan Zhao, Shihao Ding, Cheng Wang, Yong Yao, Xiaochuan Xu, Frédéric Grillot, Jianan Duan, "Reflection sensitivity of dual-state quantum dot lasers," Photonics Res. 11, 1713 (2023) Copy Citation Text show less
    References

    [1] J. E. Bowers, L. Chang, M. Li, Q. Lin, W. Xie, X. Wang, H. Shu, K. Vahala. Silicon photonic integrated circuits for LiDAR. IEEE Photonics Conference (IPC), 1-3(2022).

    [2] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [3] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [4] Y.-G. Zhou, X.-Y. Zhao, C.-F. Cao, Q. Gong, C. Wang. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium. Opt. Express, 26, 28131-28139(2018).

    [5] Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, J. E. Bowers. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron., 25, 1900509(2019).

    [6] F. Grillot, J. C. Norman, J. Duan, Z. Zhang, B. Dong, H. Huang, W. W. Chow, J. E. Bowers. Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics, 9, 1271-1286(2020).

    [7] Y. Arakawa, S. Lourdudoss, J. E. Bowers, T. Nakamura, C. Jagadish, J. Kwoen. Chapter Three—Quantum dot lasers for silicon photonics. Future Directions in Silicon Photonics, 101, 91-138(2019).

    [8] F. Grillot, J. Duan, B. Dong, H. Huang. Uncovering recent progress in nanostructured light-emitters for information and communication technologies. Light Sci. Appl., 10, 156(2021).

    [9] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [10] C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, J. E. Bowers. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photon., 8, 2555-2566(2021).

    [11] Y. Du, B. Xu, G. Wang, Y. Miao, B. Li, Z. Kong, Y. Dong, W. Wang, H. H. Radamson. Review of highly mismatched III-V heteroepitaxy growth on (001) silicon. Nanomaterials, 12, 741(2022).

    [12] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett., 104, 041104(2014).

    [13] J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, F. Grillot. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett., 112, 251111(2018).

    [14] C. R. Fitch, I. P. Marko, A. Baltušis, D. Jung, J. C. Norman, J. E. Bowers, S. J. Sweeney. Carrier recombination properties of low-threshold 1.3 μm quantum dot lasers on silicon. IEEE J. Sel. Top. Quantum Electronics, 28, 1900210(2021).

    [15] C. Jiang, H. Liu, J. Wang, X. Ren, Q. Wang, Z. Liu, B. Ma, K. Liu, R. Ren, Y. Zhang, S. Cai, Y. Huang. Demonstration of room-temperature continuous-wave operation of InGaAs/AlGaAs quantum well lasers directly grown on on-axis silicon (001). Appl. Phys. Lett., 121, 061102(2022).

    [16] Z.-R. Lv, S. Wang, H. Wang, H.-M. Wang, H.-Y. Chai, X.-G. Yang, L. Meng, C. Ji, T. Yang. Significantly improved performances of 1.3 μm InAs/GaAs QD laser by spatially separated dual-doping. Appl. Phys. Lett., 121, 021105(2022).

    [17] D. Arsenijević, D. Bimberg. Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying. Proc. SPIE, 9892, 98920S(2016).

    [18] S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, J. P. Reithmaier. Temperature-insensitive high-speed directly modulated 1.55-μm quantum dot lasers. IEEE Photon. Technol. Lett., 28, 2451-2454(2016).

    [19] H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. Bowers, F. Grillot. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photon., 5, 016103(2020).

    [20] M. Buffolo, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, M. Meneghini. Degradation of 1.3 μm InAs quantum-dot laser diodes: Impact of dislocation density and number of quantum dot layers. IEEE J. Quantum Electron., 57, 2000108(2020).

    [21] J. Duan, Y. Zhou, B. Dong, H. Huang, J. C. Norman, D. Jung, Z. Zhang, C. Wang, J. E. Bowers, F. Grillot. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett., 45, 4887-4890(2020).

    [22] Z. Yang, Z. Ding, L. Liu, H. Zhong, S. Cao, X. Zhang, S. Lin, X. Huang, H. Deng, Y. Yu, S. Yu. High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings. Photon. Res., 10, 1271-1279(2022).

    [23] A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën, A. Fiore. Impact of intraband relaxation on the performance of a quantum-dot laser. IEEE J. Sel. Top. Quantum Electron., 9, 1308-1314(2003).

    [24] E. A. Viktorov, P. Mandel, Y. Tanguy, J. Houlihan, G. Huyet. Electron-hole asymmetry and two-state lasing in quantum dot lasers. Appl. Phys. Lett., 87, 053113(2005).

    [25] A. Roehm, B. Lingnau, K. Luedge. Understanding ground-state quenching in quantum-dot lasers. IEEE J. Quantum Electron., 51, 2000211(2014).

    [26] C. Wang, B. Lingnau, K. Lüdge, J. Even, F. Grillot. Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state. IEEE J. Quantum Electron., 50, 723-731(2014).

    [27] D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, G. Eisenstein. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers. Appl. Phys. Lett., 104, 181101(2014).

    [28] B. Stevens, D. Childs, H. Shahid, R. Hogg. Direct modulation of excited state quantum dot lasers. Appl. Phys. Lett., 95, 061101(2009).

    [29] H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, F. Grillot. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Adv., 6, 125114(2016).

    [30] H. Huang, L.-C. Lin, C.-Y. Chen, D. Arsenijević, D. Bimberg, F.-Y. Lin, F. Grillot. Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes. Opt. Express, 26, 1743-1751(2018).

    [31] L.-C. Lin, C.-Y. Chen, H. Huang, D. Arsenijević, D. Bimberg, F. Grillot, F.-Y. Lin. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Opt. Lett., 43, 210-213(2018).

    [32] C.-G. Ma, J.-L. Xiao, Z.-X. Xiao, Y.-D. Yang, Y.-Z. Huang. Chaotic microlasers caused by internal mode interaction for random number generation. Light Sci. Appl., 11, 187(2022).

    [33] R. Pawlus, L. Columbo, P. Bardella, S. Breuer, M. Gioannini. Intensity noise behavior of an InAs/InGaAs quantum dot laser emitting on ground states and excited states. Opt. Lett., 43, 867-870(2018).

    [34] A. Röhm, B. Lingnau, K. Lüdge. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices. Appl. Phys. Lett., 106, 191102(2015).

    [35] Z.-R. Lv, H.-M. Ji, S. Luo, F. Gao, F. Xu, D.-H. Xiao, T. Yang. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation. AIP Adv., 5, 107115(2015).

    [36] Y. Xiong, X. Zhang. Two-state lasing at room temperature in InAs/InP quantum dots. J. Appl. Phys., 126, 133102(2019).

    [37] B. Kelleher, M. Dillane, E. A. Viktorov. Optical information processing using dual state quantum dot lasers: complexity through simplicity. Light Sci. Appl., 10, 238(2021).

    [38] B. Tykalewicz, D. Goulding, S. P. Hegarty, G. Huyet, D. Byrne, R. Phelan, B. Kelleher. All-optical switching with a dual-state, single-section quantum dot laser via optical injection. Opt. Lett., 39, 4607-4610(2014).

    [39] E. Viktorov, I. Dubinkin, N. Fedorov, T. Erneux, B. Tykalewicz, S. Hegarty, G. Huyet, D. Goulding, B. Kelleher. Injection-induced, tunable all-optical gating in a two-state quantum dot laser. Opt. Lett., 41, 3555-3558(2016).

    [40] M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, M. K. Smit. A fast low-power optical memory based on coupled micro-ring lasers. Nature, 432, 206-209(2004).

    [41] C. Zhang, D. Liang, G. Kurczveil, A. Descos, R. G. Beausoleil. Hybrid quantum-dot microring laser on silicon. Optica, 6, 1145-1151(2019).

    [42] R. S. Gajjela, A. L. Hendriks, J. O. Douglas, E. M. Sala, P. Steindl, P. Klenovský, P. A. Bagot, M. P. Moody, D. Bimberg, P. M. Koenraad. Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots. Light Sci. Appl., 10, 125(2021).

    [43] M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, Y. Nakano. Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops. IEEE Photon. Technol. Lett., 18, 1421-1423(2006).

    [44] B. Garbin, D. Goulding, S. Hegarty, G. Huyet, B. Kelleher, S. Barland. Incoherent optical triggering of excitable pulses in an injection-locked semiconductor laser. Opt. Lett., 39, 1254-1257(2014).

    [45] M. Dillane, B. Lingnau, E. Viktorov, I. Dubinkin, N. Fedorov, B. Kelleher. Asymmetric excitable phase triggering in an optically injected semiconductor laser. Opt. Lett., 46, 440-443(2021).

    [46] B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, F. Grillot. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch. Photon. Res., 9, 1550-1558(2021).

    [47] J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, F. Grillot. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett., 31, 345-348(2019).

    [48] S. Ding, B. Dong, H. Huang, J. E. Bowers, F. Grillot. Reflection sensitivity of InAs/GaAs epitaxial quantum dot lasers under direct modulation. Electron. Lett., 58, 363-365(2022).

    [49] Y. Arakawa, T. Nakamura, K. Kurata. Highlights of 10-years of research in a Japanese Si photonics project. Optical Fiber Communication Conference, Th3C-6(2022).

    [50] E. A. Viktorov, P. Mandel, I. O’Driscoll, O. Carroll, G. Huyet, J. Houlihan, Y. Tanguy. Low-frequency fluctuations in two-state quantum dot lasers. Opt. Lett., 31, 2302-2304(2006).

    [51] M. Virte, K. Panajotov, M. Sciamanna. Mode competition induced by optical feedback in two-color quantum dot lasers. IEEE J. Quantum Electron., 49, 578-585(2013).

    [52] M. Virte, S. Breuer, M. Sciamanna, K. Panajotov. Switching between ground and excited states by optical feedback in a quantum dot laser diode. Appl. Phys. Lett., 105, 121109(2014).

    [53] A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. M. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. N. Ledentsov, D. Bimberg, Z. L. Alferov. InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain. J. Cryst. Growth, 251, 729-736(2003).

    [54] B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long-and short-cavity feedback conditions for photonic integrated circuits. Phys. Rev. A, 103, 033509(2021).

    [55] C. Wang, M. Osiński, J. Even, F. Grillot. Phase-amplitude coupling characteristics in directly modulated quantum dot lasers. Appl. Phys. Lett., 105, 221114(2014).

    [56] Y. Zhou, J. Duan, F. Grillot, C. Wang. Optical noise of dual-state lasing quantum dot lasers. IEEE J. Quantum Electron., 56, 2001207(2020).

    [57] Y. Wei, S. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. Zhao, M. Sadeghi. Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm. Appl. Phys. Lett., 81, 1621-1623(2002).

    [58] Y. Gu, T. Yang, H. Ji, P. Xu, Z. Wang. Redshift and discrete energy level separation of self-assembled quantum dots induced by strain-reducing layer. J. Appl. Phys., 109, 064320(2011).

    [59] H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, F. Grillot. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B, 35, 2780-2787(2018).

    [60] T. Heil, I. Fischer, W. Elsäßer, A. Gavrielides. Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys. Rev. Lett., 87, 243901(2001).

    [61] S. Zhao, F. Grillot. Effect of Shockley-Read-Hall recombination on the static and dynamical characteristics of epitaxial quantum-dot lasers on silicon. Phys. Rev. A, 103, 063521(2021).

    [62] P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, D. Bimberg. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett., 87, 157401(2001).

    [63] O. B. Shchekin, G. Park, D. L. Huffaker, D. G. Deppe. Discrete energy level separation and the threshold temperature dependence of quantum dot lasers. Appl. Phys. Lett., 77, 466-468(2000).

    [64] H. Liu, M. Hopkinson. Tuning the structural and optical properties of 1.3-μm InAs/GaAs quantum dots by a combined InAlAs and GaAs strained buffer layer. Appl. Phys. Lett., 82, 3644-3646(2003).

    [65] J. Duan, X.-G. Wang, Y.-G. Zhou, C. Wang, F. Grillot. Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J. Quantum Electron., 54, 2001407(2018).

    [66] C. Wang, J.-P. Zhuang, F. Grillot, S.-C. Chan. Contribution of off-resonant states to the phase noise of quantum dot lasers. Opt. Express, 24, 29872-29881(2016).

    [67] F. Gr, B. Dagens, J.-G. Provost, H. Su, L. F. Lester. Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron., 44, 946-951(2008).

    [68] J. Helms, K. Petermann. A simple analytic expression for the stable operation range of laser diodes with optical feedback. IEEE J. Quantum Electron., 26, 833-836(1990).

    [69] J. O. Binder, G. D. Cormack. Mode selection and stability of a semiconductor laser with weak optical feedback. IEEE J. Quantum Electron., 25, 2255-2259(1989).

    Zhiyong Jin, Heming Huang, Yueguang Zhou, Shiyuan Zhao, Shihao Ding, Cheng Wang, Yong Yao, Xiaochuan Xu, Frédéric Grillot, Jianan Duan, "Reflection sensitivity of dual-state quantum dot lasers," Photonics Res. 11, 1713 (2023)
    Download Citation