• Advanced Photonics Nexus
  • Vol. 1, Issue 1, 016003 (2022)
Shiyao Fu1、2、3、*, Zijun Shang1、2、3, Lan Hai1、2、3, Lei Huang1、2、3, Yanlai Lv1、2、3, and Chunqing Gao1、2、3、*
Author Affiliations
  • 1Beijing Institute of Technology, School of Optics and Photonics, Beijing, China
  • 2Ministry of Industry and Information Technology of the People’s Republic of China, Key Laboratory of Information Photonics Technology, Beijing, China
  • 3Ministry of Education of the People’s Republic of China, Key Laboratory of Photoelectronic Imaging Technology and System, Beijing, China
  • show less
    DOI: 10.1117/1.APN.1.1.016003 Cite this Article Set citation alerts
    Shiyao Fu, Zijun Shang, Lan Hai, Lei Huang, Yanlai Lv, Chunqing Gao. Orbital angular momentum comb generation from azimuthal binary phases[J]. Advanced Photonics Nexus, 2022, 1(1): 016003 Copy Citation Text show less
    References

    [1] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [2] J. Verbeeck, H. Tian, P. Schattschneider. Production and application of electron vortex beams. Nature, 467, 301-304(2010).

    [3] C. W. Clark et al. Controlling neutron orbital angular momentum. Nature, 525, 504-506(2015).

    [4] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [5] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [6] L. Allen et al. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [7] L. Allen, M. J. Padgett, M. Babiker. The orbital angular momentum of light. Prog. Opt., 39, 291-372(1999).

    [8] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [9] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [10] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [11] T. Lei et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [12] M. Krenna et al. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A., 113, 13648-13653(2016).

    [13] S. Fu et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding. Opt. Lett., 44, 4753-4756(2019).

    [14] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [15] M. P. J. Lavery et al. Observation of the rotational Doppler shift of a white-light, orbital- angular-momentum-carrying beam backscattered from a rotating body. Optica, 1, 1-4(2014).

    [16] S. Fu et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt. Express, 25, 20098-20108(2017).

    [17] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [18] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [19] X. Qiu et al. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica, 5, 208-212(2018).

    [20] M. Granata et al. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors. Phys. Rev. Lett., 105, 231102(2010).

    [21] N. Andreas, B. Christina, W. Benno. Higher-order Laguerre–Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors. Opt. Lett., 42, 751-754(2017).

    [22] J. B. Götte et al. Light beams with fractional orbital angular momentum and their vortex structure. Opt. Express, 16, 993-1006(2008).

    [23] M. Mafu et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A., 88, 032305(2013).

    [24] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [25] S. Ngcobo et al. A digital laser for on-demand laser modes. Nat. Commun., 4, 2289(2013).

    [26] H. Sroor et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [27] R. Song et al. Resonantly pumped Er:YAG vector laser with selective polarization states at 1.6 μm. Opt. Lett., 45, 4626-4629(2020).

    [28] Y. Shen et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica, 7, 820-831(2020).

    [29] M. W. Beijersbergen et al. Helical-wavefront laser beams produced with spiral phase plate. Opt. Commun., 112, 321-327(1994).

    [30] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics, 8, 200-227(2016).

    [31] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [32] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [33] H. Zhou et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation. Opt. Mater. Express, 9, 2699-2707(2019).

    [34] H. Wang, S. Fu, C. Gao. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom. Opt. Express, 29, 10811-10824(2021).

    [35] Y. Zhao et al. Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link. Opt. Express, 25, 28743-28751(2017).

    [36] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [37] X. Fang et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv. Photonics, 3, 015001(2021).

    [38] J. Lin et al. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element. Opt. Lett., 30, 3266-3268(2005).

    [39] L. Zhu, J. Wang. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt. Express, 23, 26221-26233(2015).

    [40] S. Li, J. Wang. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Sci. Rep., 5, 9677(2015).

    [41] Y. Yang et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys. Rev. Appl., 12, 064007(2019).

    [42] S. Fu et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 19(2020).

    [43] C. Zhou, L. Liu. Numerical study of Dammann array illuminators. Appl. Opt., 34, 5961-5969(1995).

    [44] B. Sephton et al. A versatile quantum walk resonator with bright classical light. PLoS ONE, 14, e0214891(2019).

    [45] G. Ruffato et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams. Sci. Rep., 8, 10248(2018).

    [46] S. Fu et al. Integrating 5 × 5 Dammann gratings to detect orbital angular momentum states of beams with the range of −24 to +24. Appl. Opt., 55, 1514-1517(2016).

    [47] L. Chen. Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image. Light Sci. Appl., 10, 148(2021).

    [48] Y. D. Liu et al. Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam. Opt. Commun., 281, 1968-1975(2008).

    [49] C. Schulze et al. Measurement of the orbital angular momentum density of light by modal decomposition. New J. Phys., 15, 073025(2013).

    [50] H. Dammann, E. Klotz. Coherent optical generation and inspection of two-dimensional periodic structures. Optica Acta: Int. J. Opt., 24, 505-515(1977).

    [51] J. Jahns et al. Dammann gratings for laser beam shaping. Opt. Eng., 28, 281267(1989).

    [52] J. Li, Z. Peng, Y. Fu. Diffraction transfer function and its calculation of classic diffraction formula. Opt. Commun., 280, 243-248(2007).

    [53] S. Fu et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt. Express, 24, 6240-6248(2016).

    [54] M. Mirhosseini et al. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 4, 2781(2013).

    [55] H. L. Zhou et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci. Appl., 6, e16251(2017).

    Shiyao Fu, Zijun Shang, Lan Hai, Lei Huang, Yanlai Lv, Chunqing Gao. Orbital angular momentum comb generation from azimuthal binary phases[J]. Advanced Photonics Nexus, 2022, 1(1): 016003
    Download Citation