• Photonics Research
  • Vol. 12, Issue 11, 2474 (2024)
Ruixue Yin1,2,†, Yuhang Yang1,†, Linsong Hou3, Heming Wei3,*..., Hongbo Zhang1 and Wenjun Zhang4|Show fewer author(s)
Author Affiliations
  • 1Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai 200237, China
  • 2National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
  • 3Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
  • 4Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A9, Canada
  • show less
    DOI: 10.1364/PRJ.525651 Cite this Article Set citation alerts
    Ruixue Yin, Yuhang Yang, Linsong Hou, Heming Wei, Hongbo Zhang, Wenjun Zhang, "Two-photon 3D printed fiber-optic Fabry–Perot probe for triaxial contact force detection of guidewire tips," Photonics Res. 12, 2474 (2024) Copy Citation Text show less
    References

    [1] Y. Song, L. Li, Y. Tian. A novel master–slave interventional surgery robot with force feedback and collaborative operation. Sensors, 23, 3584(2023).

    [2] R. E. Lovegrove, M. Javid, T. R. Magee. A meta-analysis of 21178 patients undergoing open or endovascular repair of abdominal aortic aneurysm. Br. J. Surg., 95, 677-684(2008).

    [3] Y. Wang, S. Guo, T. Tamiya. A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation. Int. J. Med. Rob. Comput. Assist. Surg., 13, e1769(2017).

    [4] X. Chen, Y. Chen, W. Duan. Design and evaluation of a learning-based vascular interventional surgery robot. Fibers, 10, 106(2022).

    [5] J. A. Kaufman, S. C. Geller, D. C. Brewster. Endovascular repair of abdominal aortic aneurysms: current status and future directions. AJR Am. J. Roentgenol., 175, 289-302(2000).

    [6] T. K. Tanev. Minimally-invasive-surgery parallel robot with non-identical limbs. IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1-6(2014).

    [7] C. Song, S. Xia, H. Zhang. Novel endovascular interventional surgical robotic system based on biomimetic manipulation. Micromachines, 13, 1587(2022).

    [8] N. Venketasubramanian, B. W. Yoon, J. Pandian. Stroke epidemiology in south, east, and south-east Asia: a review. J. Stroke, 19, 286-294(2017).

    [9] J. Guo, M. Li, Y. Wang. An image information-based objective assessment method of technical manipulation skills for intravascular interventions. Sensors, 23, 4031(2023).

    [10] Y. Ma, S. Guo, C. Lyu. Irregular motion recognition of guidewire in vascular interventional surgery. IEEE International Conference on Mechatronics and Automation (ICMA), 1619-1624(2020).

    [11] T. M. Patel, S. C. Shah, S. B. Pancholy. Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience. EClinicalMedicine, 14, 53-58(2019).

    [12] M. M. Al-Salihi, R. S. Tubbs, A. Ayyad. Introduction to Robotics in Minimally Invasive Neurosurgery(2022).

    [13] D. Yang, N. Xiao, Y. Xia. An interventional surgical robot based on multi-data detection. Appl. Sci., 13, 5301(2023).

    [14] Y. Zhao, Z. Mei, X. Luo. Remote vascular interventional surgery robotics: a literature review. Quant. Imaging Med. Surg., 12, 2552-2574(2022).

    [15] M. Kalantari, M. Ramezanifard, R. Ahmadi. A piezoresistive tactile sensor for tissue characterization during catheter-based cardiac surgery. Int. J. Med. Rob. Comput. Assist. Surg., 7, 431-440(2011).

    [16] U. Kim, D.-H. Lee, W. J. Yoon. Force sensor integrated surgical forceps for minimally invasive robotic surgery. IEEE Trans. Rob., 31, 1214-1224(2015).

    [17] K. S. Kumar, Z. Xu, M. S. Kalairaj. Stretchable capacitive pressure sensing sleeve deployable onto catheter balloons towards continuous intra-abdominal pressure monitoring. Biosensors, 11, 156(2021).

    [18] G. Chatzipirpiridis, P. Erne, O. Ergeneman. A magnetic force sensor on a catheter tip for minimally invasive surgery. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 7970-7973(2015).

    [19] T. Li, A. Pan, H. Ren. A high-resolution triaxial catheter tip force sensor with miniature flexure and suspended optical fibers. IEEE Trans. Ind. Electron., 67, 5101-5111(2020).

    [20] Z. Tang, S. Wang, M. Li. Development of a distal tri-axial force sensor for minimally invasive surgical palpation. IEEE Trans. Med. Rob. Bionics, 4, 145-155(2022).

    [21] H. Su, I. I. Iordachita, J. Tokuda. Fiber-optic force sensors for MRI-guided interventions and rehabilitation: a review. IEEE Sens. J., 17, 1952-1963(2017).

    [22] T. Li, N. K. K. King, H. Ren. Disposable FBG-based tridirectional force/torque sensor for aspiration instruments in neurosurgery. IEEE Trans. Ind. Electron., 67, 3236-3247(2020).

    [23] Y. Deng, T. Yang, S. Dai. A miniature triaxial fiber optic force sensor for flexible ureteroscopy. IEEE Trans. Biomed. Eng., 68, 2339-2347(2021).

    [24] D. Shin, H.-U. Kim, A. Kulkarni. Development of force sensor system based on tri-axial fiber Bragg grating with flexure structure. Sensors, 22, 16(2021).

    [25] M. Zou, C. Liao, S. Liu. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light Sci. Appl., 10, 171(2021).

    [26] Y. Zhao, F. Xia, M. Chen. Optical fiber axial contact force sensor based on bubble-expanded Fabry–Pérot interferometer. Sens. Actuators A, 272, 318-324(2018).

    [27] J. Wu, M. Yao, F. Xiong. Optical fiber-tip Fabry–Pérot interferometric pressure sensor based on an in situ μ-printed air cavity. J. Lightwave Technol., 36, 3618-3623(2018).

    [28] P. Zhao, K. V. Krishnaiah, L. Guo. Ultraminiature optical fiber-tip 3D-microprinted photothermal interferometric gas sensors. Laser Photon. Rev., 18, 2301285(2024).

    [29] C. Lang, Y. Liu, J. Ye. An ultra-sensitive fiber sensor for micro-newton contact force detection based on a polymerized hollow-cylinder by one-step fabrication. IEEE Sens. J., 21, 25710-25715(2021).

    [30] J. W. Smith, J. C. Williams, J. S. Suelzer. Three-dimensional Fabry–Pérot cavities sculpted on fiber tips using a multiphoton polymerization process. J. Micromech. Microeng., 30, 125007(2020).

    [31] V. V. S. N. Sitaramgupta, B. S. Arjun, U. Pal. Design and analysis of MEMS-based sensors towards measuring catheter contact forces. IEEE Sens. J., 23, 13451-13461(2022).

    [32] B. D. Hinck, A. S. Emmott, M. Omar. Hybrid guidewires: analysis and comparison of the mechanical properties and safety profiles. Can. Urol. Assoc. J., 13, 59(2018).

    [33] F. Klink, A. Boese, S. Voß. Design and implementation of a medical device test stand for micro-catheters and guide-wires. Curr. Dir. Biomed. Eng., 7, 339-342(2021).

    [34] D. Brandão. Choosing the right guidewire: the key for a successful revascularization. Art and Challenges Involved in the Treatment of Ischaemic Damage(2022).

    [35] M. Liang, X. Fang, Y. Ning. Temperature compensation fiber Bragg grating pressure sensor based on plane diaphragm. Photon. Sens., 8, 157-167(2018).

    [36] G. Wei, Q. Jiang. Force sensitivity and fringe contrast characteristics of spheroidal Fabry-Perot interferometers. Opt. Express, 28, 24586-24598(2020).

    [37] F. Wang, Q. Jiang, Y. Zhang. A miniature triaxial force sensor based on fiber Bragg gratings for flexible endoscopic robot. Measurement, 232, 114645(2024).

    [38] L. Men, K. Wang, D. Ren. A two-photon 3D printed photosensitive composite(2023).

    [39] T. Roy, G. Liu, N. Shaikh. Puncturing plaques: relating MRI characteristics of peripheral artery lesions to guidewire puncture forces. J. Endovasc. Ther., 24, 35-46(2017).

    [40] B. Han, Y.-J. Yoon, M. Hamidullah. Silicon nanowire based ring shape force sensor for sensorized guidewires. 17th International Conference on Solid-State Sensors, Actuators and Microsystems, 718-721(2013).

    [41] N. Stefanova, M. Hessinger, T. Opitz. Characteristic of a force sensing guide wire for minimally invasive cardiac surgery. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 5220-5223(2016).

    [42] T. Sakorikar, H. J. Pandya. An MEMS-based force sensor: packaging and proprioceptive force recognition through vibro-haptic feedback for catheters. IEEE Trans. Instrum. Meas., 71, 4001911(2022).

    [43] C. Lv, S. Wang, C. Shi. A high-precision and miniature fiber Bragg grating-based force sensor for tissue palpation during minimally invasive surgery. Ann. Biomed. Eng., 48, 669-681(2020).

    [44] H. Zhang, Q. Jiang. Highly sensitive air pressure sensor based on Fabry-Perot interference. IEEE Sens. J., 22, 6637-6643(2022).

    Ruixue Yin, Yuhang Yang, Linsong Hou, Heming Wei, Hongbo Zhang, Wenjun Zhang, "Two-photon 3D printed fiber-optic Fabry–Perot probe for triaxial contact force detection of guidewire tips," Photonics Res. 12, 2474 (2024)
    Download Citation