• Photonics Research
  • Vol. 8, Issue 7, 1064 (2020)
Bei-Bei Li1, George Brawley2, Hamish Greenall2, Stefan Forstner2, Eoin Sheridan2, Halina Rubinsztein-Dunlop2, and Warwick P. Bowen2、*
Author Affiliations
  • 1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
  • show less
    DOI: 10.1364/PRJ.390261 Cite this Article Set citation alerts
    Bei-Bei Li, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, Warwick P. Bowen. Ultrabroadband and sensitive cavity optomechanical magnetometry[J]. Photonics Research, 2020, 8(7): 1064 Copy Citation Text show less
    References

    [1] T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [2] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [3] M. Metcalfe. Applications of cavity optomechanics. Appl. Phys. Rev., 1, 031105(2014).

    [4] A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T. J. Kippenberg. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys., 10, 095015(2008).

    [5] LIGO Scientific. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102(2016).

    [6] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol., 4, 820-823(2009).

    [7] W. Yu, W. C. Jiang, Q. Lin, T. Lu. Cavity optomechanical spring sensing of single molecules. Nat. Commun., 7, 12311(2016).

    [8] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter. A high resolution microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [9] F. G. Cervantes, L. Kumanchik, J. Pratt, J. Taylor. High sensitivity optomechanical reference accelerometer over 10 kHz. Appl. Phys. Lett., 104, 221111(2014).

    [10] S. Basiri-Esfahani, A. Armin, S. Forstner, W. P. Bowen. Precision ultrasound sensing on a chip. Nat. Commun., 10, 132(2019).

    [11] S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, H. Rubinsztein-Dunlop. Cavity optomechanical magnetometry. Phys. Rev. Lett., 108, 120801(2012).

    [12] S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, W. P. Bowen. Ultrasensitive optomechanical magnetometry. Adv. Mater., 26, 6348-6353(2014).

    [13] C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, W. P. Bowen. Optomechanical magnetometry with a macroscopic resonator. Phys. Rev. Appl., 5, 044007(2016).

    [14] W. P. Bowen, C. Yu. Cavity optomechanical magnetometry. High Sensitivity Magnetometers, Smart Sensors, Measurement and Instrumentation, 19(2016).

    [15] B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, U. L. Andersen. Quantum enhanced optomechanical magnetometry. Optica, 5, 850-857(2018).

    [16] B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, W. P. Bowen. Invited article: scalable high-sensitivity optomechanical magnetometers on a chip. APL Photon., 3, 120806(2018).

    [17] J. Zhu, G. Zhao, I. Savukov, L. Yang. Polymer encapsulated microcavity optomechanical magnetometer. Sci. Rep., 7, 8896(2017).

    [18] M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, M. V. Costache. Resonant magnon assisted optomechanical magnetometer(2019).

    [19] J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, M. R. Freeman. Nanotorsional resonator torque magnetometry. Appl. Phys. Lett., 96, 072513(2010).

    [20] M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, P. E. Barclay. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nat. Nanotechnol., 12, 127-132(2019).

    [21] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, S. J. Wind. High-resolution scanning SQUID microscope. Appl. Phys. Lett., 66, 1138-1140(1995).

    [22] F. Baudenbacher, L. E. Fong, J. R. Holzer, M. Radparvar. Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl. Phys. Lett., 82, 3487-3489(2003).

    [23] J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, K. A. Moler. Scanning SQUID susceptometers with submicron spatial resolution. Rev. Sci. Instrum., 87, 093702(2016).

    [24] H. B. Dang, A. C. Maloof, M. V. Romalis. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett., 97, 151110(2010).

    [25] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, D. M. Stamper-Kurn. High-resolution magnetometry with a spinor Bose-Einstein condensate. Phys. Rev. Lett., 98, 200801(2007).

    [26] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, J. Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8, 383-387(2009).

    [27] T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup. Subpicotesla diamond magnetometry. Phys. Rev. X, 5, 041001(2015).

    [28] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [29] J. C. Knight, G. Cheung, F. Jacques, T. A. Birks. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett., 22, 1129-1131(1997).

    [30] T. G. McRae, K. H. Lee, M. McGovern, D. Gwyther, W. P. Bowen. Thermo-optic locking of a semiconductor laser to a microcavity resonance. Opt. Express, 17, 21977-21985(2009).

    [31] G. Engdahl. Handbook of Giant Magnetostrictive Materials(2000).

    [32] Y. J. Bi, J. S. Abell. Microstructural characterisation of Terfenol-D crystals prepared by the Czochralski technique. J. Cryst. Growth, 172, 440-449(1997).

    [33] G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, W.-S. Zhan. ⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible. Appl. Phys. Lett., 67, 2005-2007(1995).

    CLP Journals

    [1] Kaiyu Cui, Zhilei Huang, Ning Wu, Qiancheng Xu, Fei Pan, Jian Xiong, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang. Phonon lasing in a hetero optomechanical crystal cavity[J]. Photonics Research, 2021, 9(6): 937

    Bei-Bei Li, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, Warwick P. Bowen. Ultrabroadband and sensitive cavity optomechanical magnetometry[J]. Photonics Research, 2020, 8(7): 1064
    Download Citation