• Acta Optica Sinica
  • Vol. 38, Issue 8, 0806002 (2018)
Di Wang1、2、*, Xuan Li1, Haoyang Pi1, Fei Yang1、*, Qing Ye1, and Haiwen Cai1、*
Author Affiliations
  • 1 Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS201838.0806002 Cite this Article Set citation alerts
    Di Wang, Xuan Li, Haoyang Pi, Fei Yang, Qing Ye, Haiwen Cai. Interference Field Behind Phase Mask and Its Influence on the Loss Characteristic in Fiber Bragg Gratings[J]. Acta Optica Sinica, 2018, 38(8): 0806002 Copy Citation Text show less
    References

    [1] Fan Y Y, Zhou J, He B et al. Preparation and high-power fiber laser experimentation of double-clad fiber grating[J]. Chinese Journal of Lasers, 37, 2395-2399(2010).

    [2] Pan Y Z, Zhang J, Hu G J et al. High-power ytterbium-doped fiber laser based on fiber grating[J]. Acta Optica Sinica, 24, 1237-1239(2004).

    [3] Voigtländer C, Krämer R G, Liem A et al. 1 kW fiber laser oscillator with fs-written fiber Bragg gratings. [C]∥The European Conference on Lasers and Electro-Optics, June 21-25, 2015, Munich, Germany. Washington: Optical Society of America, CJ_11(2015).

    [4] Xiao Q R, Zhang D Y, Wang Z H et al. Review of high power fiber laser pump coupling technology[J]. Chinese Journal of Lasers, 44, 0201008(2017).

    [5] Bernard P, Bessard J, Brochu G et al. Active thermography for reliability assessment of high power fiber laser FBG reflectors. [C]∥Fiber Laser Applications, February 16-17, 2011, Istanbul, Turkey. Washington: Optical Society of America, FThE12(2011).

    [6] Littler I C M, Grujic T, Eggleton B J. Photothermal effects in fiber Bragg gratings[J]. Applied Optics, 45, 4679-4685(2006). http://europepmc.org/abstract/MED/16799682

    [7] Ding M, Chen D J, Fang Z J et al. Photothermal effects in phase shifted FBG with varied light wavelength and intensity[J]. Optics Express, 24, 25370-25379(2016). http://europepmc.org/abstract/med/27828475

    [8] Wang D, Pi H Y, Li X et al. Measurement and analysis of loss in fiber Bragg gratings[J]. Chinese Journal of Lasers, 45, 0606005(2018).

    [9] Tarnowski K, Urbanczyk W. Origin of Bragg reflection peaks splitting in gratings fabricated using a multiple order phase mask[J]. Optics Express, 21, 21800-21810(2013).

    [10] Rollinson C M, Wade S A, Dragomir N M et al. Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure[J]. Optics Communications, 256, 310-318(2005).

    [11] Kouskousis B P, Rollinson C M, Kitcher D J et al. Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating[J]. Optics Express, 14, 10332-10338(2006).

    [12] Rollinson C M, Wade S A, Kouskousis B P et al. Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks[J]. Journal of the Optical Society of America A, 29, 1259-1268(2012).

    [13] Mahakud R, Prakash O, Nakhe S V et al. Analysis on the saturation of refractive index modulation in fiber Bragg gratings (FBGs) written by partially coherent UV beams[J]. Applied Optics, 51, 1828-1835(2012).

    [14] Zhang Y J, Wang M, Wang Z F et al. Fabrication of chirped and tilted fiber Bragg gratings and investigation of Raman filtering effect[J]. Acta Optica Sinica, 37, 0106002(2017).

    Di Wang, Xuan Li, Haoyang Pi, Fei Yang, Qing Ye, Haiwen Cai. Interference Field Behind Phase Mask and Its Influence on the Loss Characteristic in Fiber Bragg Gratings[J]. Acta Optica Sinica, 2018, 38(8): 0806002
    Download Citation