• Acta Optica Sinica
  • Vol. 39, Issue 11, 1123003 (2019)
Shilong Li1, Yanting Tian1, and Chao Liu2、*
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 0 30024, China
  • 2School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/AOS201939.1123003 Cite this Article Set citation alerts
    Shilong Li, Yanting Tian, Chao Liu. Reflective-Mirror-Based Optical Tracking Actuated by Electrowetting Effect[J]. Acta Optica Sinica, 2019, 39(11): 1123003 Copy Citation Text show less
    References

    [1] Hornbeck L J. 128×128 deformable mirror device[J]. IEEE Transactions on Electron Devices, 30, 539-545(1983). http://ieeexplore.ieee.org/iel5/16/31877/01483064.pdf

    [2] Hou L, Smith N R, Heikenfeld J. Electrowetting manipulation of any optical film[J]. Applied Physics Letters, 90, 251114(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4827428

    [3] Lü T, Duan Y X, Xiang J F et al. Temperature characteristics of 780 nm acousto-optic modulator[J]. Acta Optica Sinica, 37, 0812001(2017).

    [4] Zhang X P, Zhang L B, Liu J et al. Optical system of spatial narrow linewidth laser[J]. Acta Optica Sinica, 38, 0414003(2018).

    [5] Lin Y J, Chen K M, Wu S T. Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism[J]. Optics Express, 17, 8651-8656(2009). http://www.ncbi.nlm.nih.gov/pubmed/19434198

    [6] Cheng J T, Chen C L. Adaptive beam tracking and steering via electrowetting-controlled liquid prism[J]. Applied Physics Letters, 99, 191108(2011). http://scitation.aip.org/content/aip/journal/apl/99/19/10.1063/1.3660578

    [7] Smith N R, Abeysinghe D C, Haus J W et al. Agile wide-angle beam steering with electrowetting microprisms[J]. Optics Express, 14, 6557-6563(2006). http://europepmc.org/abstract/MED/19516833

    [8] Liu C, Li L, Wang Q H. Liquid prism for beam tracking and steering[J]. Optical Engineering, 51, 114002(2012). http://spie.org/Publications/Journal/10.1117/1.OE.51.11.114002

    [9] Xiong S, Liu A Q, Chin L K et al. An optofluidic prism tuned by two laminar flows[J]. Lab on a Chip, 11, 1864-1869(2011). http://www.ncbi.nlm.nih.gov/pubmed/21448472

    [10] Sun L. Polymeric waveguide prism-based electro-optic beam deflector[J]. Optical Engineering, 40, 1217-1222(2001). http://proceedings.spiedigitallibrary.org/journalArticle/Download?fullDOI=10.1117%2F1.1385164&isResultClick=False

    [11] Takei A, Iwase E, Hoshino K et al. Angle-tunable liquid wedge prism driven by electrowetting[J]. Journal of Microelectromechanical Systems, 16, 1537-1542(2007). http://ieeexplore.ieee.org/document/4384511/

    [12] Wang X, Wilson D, Muller R et al. Liquid-crystal blazed-grating beam deflector[J]. Applied Optics, 39, 6545-6555(2000). http://europepmc.org/abstract/MED/18354668

    [13] Resler D P, Hobbs D S, Sharp R C et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics Letters, 21, 689-691(1996). http://www.opticsinfobase.org/abstract.cfm?uri=ol-21-9-689

    [14] Winker B, Mahajan M, Hunwardsen M. Liquid crystal beam directors for airborne free-space optical communications. [C]∥2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720), March 6-13, 2004, Big Sky, MT, USA. New York: IEEE, 1702-1709(2004).

    [15] Apter B, Efron U, Bahat-Treidel E. On the fringing-field effect in liquid-crystal beam-steering devices[J]. Applied Optics, 43, 11-19(2004). http://www.ncbi.nlm.nih.gov/pubmed/14714638

    [16] Löfving B, Hård S. Beam steering with two ferroelectric liquid-crystal spatial light modulators[J]. Optics Letters, 23, 1541-1543(1998). http://www.ncbi.nlm.nih.gov/pubmed/18091840

    [17] Kang H, Kim J. EWOD (electrowetting-on-dielectric) actuated optical micromirror. [C]∥19th IEEE International Conference on Micro Electro Mechanical Systems, January 22-26, 2006, Istanbul, Turkey. New York: IEEE, 742-745(2006).

    [18] Shahzad A, Song J K. Beam deflector and position sensor using electrowetting and mechanical wetting of sandwiched droplets[J]. Journal of Physics D: Applied Physics, 49, 385106(2016).

    [19] Lee J, Kim C J. Surface-tension-driven microactuation based on continuous electrowetting[J]. Journal of Microelectromechanical Systems, 9, 171-180(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=846697

    [20] Li L, Liu C, Wang Q H. Optical switch based on tunable aperture[J]. Optics Letters, 37, 3306-3308(2012). http://www.onacademic.com/detail/journal_1000038264632410_ecc0.html

    [21] Liu C, Li L, Wang Q H. Bidirectional optical switch based on electrowetting[J]. Journal of Applied Physics, 113, 193106(2013).

    [22] Krupenkin T, Yang S, Mach P. Tunable liquid microlens[J]. Applied Physics Letters, 82, 316-318(2003).

    [23] Müller P, Kloss A, Liebetraut P et al. A fully integrated optofluidic attenuator[J]. Journal of Micromechanics and Microengineering, 21, 125027(2011). http://www.ingentaconnect.com/content/iop/jmm/2011/00000021/00000012/art125027

    Shilong Li, Yanting Tian, Chao Liu. Reflective-Mirror-Based Optical Tracking Actuated by Electrowetting Effect[J]. Acta Optica Sinica, 2019, 39(11): 1123003
    Download Citation