• Acta Optica Sinica
  • Vol. 38, Issue 5, 0501002 (2018)
Shiwei Bai1、2、1; 2; , Gang Sun、1*; *; , Xuebin Li1、1; , Qing Liu1、2、1; 2; , and Ningquan Weng1、3、1; 3;
Author Affiliations
  • 1 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230031, China
  • 3 School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
  • show less
    DOI: 10.3788/AOS201838.0501002 Cite this Article Set citation alerts
    Shiwei Bai, Gang Sun, Xuebin Li, Qing Liu, Ningquan Weng. Application of Wavelet Analysis in Research of Near-Surface Turbulence Coherent Structure[J]. Acta Optica Sinica, 2018, 38(5): 0501002 Copy Citation Text show less
    References

    [1] Kline S J, Reynolds W C, Schraub F H et al. The structure of turbulent boundary layer[J]. Journal of Fluid Mechanics, 30, 741-774(1967). http://link.springer.com/article/10.1134/1.1579793

    [2] Li X, Hu F, Pu Y F et al. Identification of coherent structures of turbulence at the atmospheric surface layer[J]. Advance in Atmospheric Sciences, 19, 687-698(2002). http://link.springer.com/article/10.1007/s00376-002-0008-x

    [3] Rao R Z[M]. Modern atmospheric optics, 481-513(2012).

    [4] Feng F, Li C W. Simulation of atmospheric phase screen based on wavelet analysis[J]. Acta Optica Sinica, 37, 0101004(2017).

    [5] Belmonte A, Taylor M T, Hollberg L et al. Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links[J]. Optics Express, 25, 15676-15686(2017). http://europepmc.org/abstract/MED/28789081

    [6] Li H S, Sang X Y. SNR and transmission error rate for remote laser communication system in real atmosphere channel[J]. Sensors and Actuators A: Physical, 258, 156-162(2017). http://www.sciencedirect.com/science/article/pii/S0924424716311736

    [7] Tang J C, Qian X M, Miao X K et al. Effects of aberrations on on-axis scintillation propagating properties of focus Gaussian beams in turbulent atmosphere[J]. Acta Optica Sinica, 37, 1101001(2017).

    [8] Li Y, Qi J, Chen F N. The propagation quality of semiconductor laser beams in anisotropic non-Kolmogorov turbulence[J]. Acta Optica Sinica, 37, 0701003(2017).

    [9] Yuan R M, Zeng Z Y. Study of optical of large-scale structure[J]. Acta Optica Sinica, 21, 19-23(2001).

    [10] Ke X Z, Xue Y. Effect on the partially coherent beam propagation properties in the atmospheric turbulence considering its scales[J]. Acta Photonica Sinica, 46, 0101002(2017).

    [11] Xu D, Duan Y, Chen K J. Influence of small-scale vortex structure on optical transmission in hypersonic turbulence flow field[J]. Infrared and Laser Engineering, 40, 2217-2222(2010).

    [12] Antonia R A, Chambers A J et al. Temperature ramps in the atmospheric surface layer[J]. Journal of the Atmospheric Science, 36, 99-108(1979). http://adsabs.harvard.edu/abs/1979JAtS...36...99A

    [13] Zeng Z Y. Bursts in the turbulent medium and light propagation[J]. Chinese Journal of Quantum Electronics, 18, 376-380(2001).

    [14] Sun K H, Shu W. On the burst detection techniques in wall-turbulence[J]. Acta Mechanica Sinica, 26, 488-493(1994).

    [15] Quan L H, Hu F, Cheng X L. Analysing coherent structures of humidity time series by the spectral analysis of the wavelet transform coefficients[J]. Chinese Journal of Atmospheric Sciences, 31, 57-63(2007).

    [16] Jiang N, Wang Z D, Shu W. The maximum energy criterion for identifying burst events in wall turbulence using wavelet analysis[J]. Acta Mechanica Sinica, 29, 406-411(1997).

    [17] Gao W, Li B L. Wavelet analysis of coherent structures at the atmosphere-forest interface[J]. Journal of Applied Meteorology, 32, 1717-1725(1993). http://bioscience.oxfordjournals.org/external-ref?access_num=10.1175/1520-0450(1993)0322.0.CO;2&link_type=DOI

    [18] Yao H, Sheng L F, He Y et al. Isolating the coherent structure in atmospheric turbulence over the sea using continuous wavelet transform[J]. Periodical of Ocean University of China, 41, 7-14(2011).

    [19] Coulter R L, Li B L. A technique using the wavelet transform to identify and isolate coherent structures in the planetary boundary layer[C]. 11 th Symposium on Boundary Layer and Turbulence. Charlotte, NC: AMS, 291-294(1995).

    [20] Chen J, Zheng Y G, Hu F. Isolating the coherent structure in atmospheric turbulence in the rough urban canopy layer by using continuous wavelet transform[J]. Chinese Journal of Atmospheric Sciences, 27, 182-190(2003).

    [21] Wang J S, Zhang J Z, Shu W. The digital filter method of extracting the coherent structure in wall turbulence[J]. Acta Mechanica Sinica, 27, 388-405(1995).

    [22] Sheng Z, Xie S Q, Pan C Y et al[M]. Probability theory and mathematical statistics, 250-252(2001).

    [23] Huang J Y[M]. Meteorological statistics and predictive methods, 24-25(2013).

    [24] Zeng Z Y, Yuan R M, Tan K et al. The spectrum of temperature in the surface layer over complicated terrain[J]. Chinese Journal of Quantum Electronics, 15, 134-139(1998).

    [25] Weng N Q, Zeng Z Y, Ma C S et al. Atmospheric structure parameter Cn2 in the boundary layer of Hefei [J]. Chinese Journal of Quantum Electronics, 15, 423-428(1998).

    Shiwei Bai, Gang Sun, Xuebin Li, Qing Liu, Ningquan Weng. Application of Wavelet Analysis in Research of Near-Surface Turbulence Coherent Structure[J]. Acta Optica Sinica, 2018, 38(5): 0501002
    Download Citation