• Journal of Inorganic Materials
  • Vol. 34, Issue 6, 573 (2019)
Na LI1, Bin LIU1, Jiao-Jiao SHI1, Yan-Yan XUE1, Heng-Yu ZHAO1, Zhang-Li SHI1, Wen-Tao HOU1, Xiao-Dong XU2、*, and Jun Xu1、*
Author Affiliations
  • 1Key Laboratory of Advanced Microstructure Materials Ministry of Education, Tongji University, Shanghai 200092, China
  • 2School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • show less
    DOI: 10.15541/jim20180403 Cite this Article
    Na LI, Bin LIU, Jiao-Jiao SHI, Yan-Yan XUE, Heng-Yu ZHAO, Zhang-Li SHI, Wen-Tao HOU, Xiao-Dong XU, Jun Xu. Research Progress of Rare-earth Doped Laser Crystals in Visible Region[J]. Journal of Inorganic Materials, 2019, 34(6): 573 Copy Citation Text show less
    References

    [4] LING ZHAO, YI YAO, YANG ZHAO et al. All-solid-state dual end pumped YVO4:Nd/LBO blue laser with 21.8 W output power at 457 nm. Opt. Spectrosc, 116, 470-472(2014).

    [5] EMMI KANTOLA, TOMI LEINONEN, SANNA RANTA et al. High-efficiency 20 W yellow VECSEL. Opt. Express, 22, 6372-6380(2014).

    [6] HAO-HAI YU, NAN ZONG, ZHONG-BEN PAN et al. Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm. Opt. Lett, 36, 3852-3854(2011).

    [7] QIAN-NAN FANG, DA-ZHI LU, HAO-HAI YU et al. Self- frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm. Opt. Lett, 41, 1002-1005(2016).

    [8] RUDIGE PASCHOTTA, NICK MOORE, W CLARKSON, W ANDRE et al. 230 mW of blue light from a thulium-doped upconversion fiber laser. IEEE.. Sele. Top. Quant, 3, 1100-1102(1997).

    [9] T SANDROCK, H SCHEIFE, E HEUMANN et al. High-power continuous-wave upconversion fiber laser at room temperature. Opt. Lett, 22, 808-810(1997).

    [10] W ROTH PRTER, J MACLEAN ALEXANDER, DAVID BURNS et al. Directly diode-laser-pumped Ti:sapphire laser. Opt. Lett, 34, 3334-3336(2009).

    [11] K GÜREL, J WITTWER V, M HOFFMANN et al. Green-diode- pumped femtosecond Ti: sapphire laser with up to 450 mW average power. Opt. Express, 23, 30043-30048(2015).

    [12] SHUJI NAKAMURA, MASAYUKI SENOH, SHIN-ICHI NAGAHAMA et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn.. Appl. Phys, 35, 74-76(1996).

    [13] M KUZNETSOV, F HAKIMI, R SPRAGUE et al. High-power(>0.5-W CW) diode-pumped vertical-external-cavity surface- emitting semiconductor lasers with circular TEM00 beams. IEEE Photonics Tech, 9, 1063-1065(1997).

    [14] G MCINERNEY J, A MOORADIAN, A LEWIS et al. High- power surface emitting semiconductor laser with extended vertical compound cavity. Electron. Lett, 39, 523-525(2003).

    [15] FABIAN REICHERT, DANIEL-TIMO MARZAHL, PHILIP-WERNER METZ et al. Efficient laser operation of diode- pumped Pr 3+,Mg 2+:SrAl12O19. Appl. Phys.B, 116, 109-113(2014).

    [16] M MALINOWSKI, F JOUBERT M, R MAHIOU et al. Visible laser emission of Pr 3+ in various hosts. J. Phys.IV, 4, 541-544(1994).

    [17] CHRISTIAN KRÄNKEL, DANIEL-TIMMO MARZAHL, FRANCESCA MOGLIA et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser. Photon. Rev, 10, 548-568(2016).

    [18] BIN LIU, JIAO-JIAO SHI, QING-GUO WANG et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3. Lumin, 196, 76-80(2018).

    [19] FABINA REICHERT, DANIEL-TIMO MARAZAHL, GUNTER HUBER-. Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19.. J. Opt. Soc. Am.B, 31, 349-354(2014).

    [20] M FECHNER, F REICHERT, NO HANSEN et al. Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19. Appl. Phys. B, 102, 731-735(2011).

    [21] T DANGER, A BLECKMANN, G HUBER. Stimulated emission and laser action of Pr 3+-doped YAlO3. Appl. Phys. B, 58, 413-420(1994).

    [22] YAN WANG, JIAN-FU LI, ZHEN-YU YOU et al. Spectroscopic properties of Pr 3+:Gd3Ga5O12 crystal.. Alloy. Compd, 502, 184-189(2010).

    [23] F CORNACCHIA, A-DI LIETO, M TONELLI et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals. Opt. Express, 16, 15932-15941(2008).

    [24] F RECHICHERT, F MOGLIA, T MARZAHL D et al. Diode pumped laser operation and spectroscopy of Pr 3+: LaF3. Opt.Express, 20, 20387-20395(2012).

    [25] S KHIARI, M VELAZQUEZ, R MONCORGE et al. Red-luminescence analysis of Pr 3+ doped fluoride crystals.. Alloy. Compd, 451, 128-131(2008).

    [26] R HAKIM, K DAMAK, A TONCELLI et al. Growth, optical spectroscopy and Judd-Ofelt analysis of Pr-doped BaY2F8 monocrystals.. Lumin, 143, 233-240(2014).

    [27] DANIEL-TIMO MARZAHL, FABIN REICHERT, MATHIES FECHNER et al. Laser Operation and Spectroscopy of Pr 3+: LaMgAl11O19. 5th Eps-Qeod Europhoton Conference(2012).

    [28] S SATTAYAPORN, P LOISEAU, G AKA et al. Crystal growth, spectroscopy and laser performances of Pr 3+:Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL). Opt.Express, 26, 1278-1289(2008).

    [29] U HOMMERICH, E BROWN, P AMEDZAKE et al. Mid-infrared (4.6 μm) emission properties of Pr3+ doped KPb2Br5. J. Appl. Phys., 100, 113507(2006).

    [30] L SOJKA, A TANG, D FURNISS et al. Broadband, mid-infrared emission from Pr 3+ doped GeAsGaSe chalcogenide fiber, optically clad. Opt. Mater, 36, 1076-1082(2014).

    [31] BRIAN-M WALSH, UWE HOMMERICH, AKIRA YOSHIKAWA et al. Mid-infrared spectroscopy of Pr-doped materials.. Lumin, 197, 349-353(2018).

    [32] BAHRAM ZANDI, LARRY-D MERKEL, JOHN-B GRUBER et al. Optical spectra and analysis for Pr 3+in SrAl12O19.. Appl. Phys, 81, 1047-1054(1997).

    [33] H-WARREN MOOS. Spectroscopic relaxation processes of rare earth ions in crystals.. Lumin, 1, 106-121(1970).

    [34] P DORENBOS. 5d-level energies of Ce 3+ and the crystalline environment. I. Fluoride compounds. Phys. Rev. B, 62, 15640-15649(2000).

    [35] M LAROCHE, ALAIN BRAUD, D GIAR et al. Spectroscopic investigations of the 4f5d energy levels of Pr 3+ in fluoride crystals by excited-state absorption and two-step excitation measurements. J. Opt. Soc. Am. B, 16, 2269-2277(1999).

    [36] MATHIEU LAROCHE, JEAN-LOUIS DOUALAN, SYLVAIN GIRARD et al. Experimental and theoretical investigations of the 4f 2\4f5d ground-state and excited-state absorption spectra of Pr 3+ in LiYF4. J. Opt. Soc. Am.B, 17, 1291-1303(2000).

    [37] B LAYNE C, H LOWDERMILK W, J WECER M. Multiyhonon relaxation of rare-earth ions in oxide glasses. Phys. Rev, 16, 11-20(1977).

    [38] H SCHUURAMANS M F, M F VAN DIJK J. On radiative and non-radiative decay times in the weak coupling limit. Phy.B, 123, 131-155(1984).

    [39] MATIN NIKL, AKIRA YOSHIKAWA. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Optical Mater, 3, 463-481(2015).

    [40] M CHEUNG Y, K GAYEN S. Excited-state absorption in Pr 3+:Y3Al5O12.. Phys. Rev.B, 49, 14827-14835(1994).

    [41] R SOLOMON, L MUELLER. Stimulated emission at 598.5 nm from Pr 3+ in LaF3. Appl. Phys. Lett, 3, 135-137(1963).

    [42] T SANDROCK, T DANGER, E HEUMANN et al. Efficient continuous wave-laser emission of Pr 3+-doped fluorides at room temperature.. Appl. Phys.B, 58, 149-151(1994).

    [43] T SANDROCK, E HEUMANN, G HUBER et al. Continuous- wave Pr,Yb:LiYF4 Upconversion Laser in the Red Spectral Range at Room Temperature. Advanced Solid State Lasers,Optical Society of America(1996).

    [44] P-W METZ, K HASSE, D PARISI et al. Continuous-wave Pr 3+:BaY2F8 and Pr 3+:LiYF4 lasers in the cyan-blue spectral region. Opt. Lett, 39, 5158-5161(2014).

    [45] PHILIP-WERNER METZ, FABIAN REICHERT, FRANCESCA MOGLIA et al. High-power red, orange, and green Pr 3+:LiYF4 lasers. Opt. Lett, 39, 3193-3196(2014).

    [46] HIROKI TANAKA, FUMIHIKO KANNARI. Power Scaling of Continuous-wave Visible Pr 3+:YLF Laser End-pumped by High Power Blue Laser Diodes. OSA Laser Congress(2017).

    [47] SAI-YU LUO, XI-GUN YAN, QIN CUI et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt. Commun, 380, 357-360(2016).

    [48] F CORNACCHIA, A RICHTER, E HEUMANN et al. Visible laser emission of solid state pumped LiLuF4:Pr 3+. Opt. Express, 15, 992-1002(2007).

    [49] ALBERTO SOTTILE, DANIELA PARISI, MAURO TONELLI. Multiple polarization orange and red laser emissions with Pr:BaY2F8. Opt. Express, 22, 13784-13791(2014).

    [50] W METZ PHILIP, SEBASTIAN MULLER, FABIAN REICHERT et al. Wide wavelength tunability and green laser operation of diode-pumped Pr 3+:KY3F10. Opt. Express, 21, 31274-31281(2013).

    [51] HAO YU, DA-PENG JIANG, FEI TANG et al. Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd 3+ ions. Mater. Lett, 206, 140-142(2017).

    [52] S SATTAYAPORN, P LOISEAU, G AKA et al. Crystal growth, spectroscopy and laser performances of Pr 3+:Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL). Opt.Express, 26, 1278-1289(2018).

    [53] MARTIN FIBRICH, JAN SULC, HELENA JELINKOVA. Pr:YAlO3 laser generation in the green spectral range. Opt. Lett, 38, 5024-5027(2013).

    [54] H JELINKOVA, J SULC et al. Pr:YAlO3 microchip laser at 662 nm. Laser Phys. Lett, 8, 116-119(2011).

    [55] M FIBRICH, J SULC, KOVA JELIN. 1Power-scaling of a Pr:YAlO3 microchip laser operating at 747 nm wavelength at room temperature. Laser Phys. Lett, 1(2014).

    [56] F REICHERT, CALMANOT, S MULLER et al. Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides. Opt. Lett, 38, 2698-2701(2013).

    [57] F REICHERT, T CALMANO, S MÜLLER et al. Visible Laser Operation of Pr,Mg:SrAl12O19 Waveguides. The European Conference on Lasers and. Electro-Optics(2013).

    [58] CHRISTIAN KRANKEL. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. IEEE Journal of Selected Topics in Quantum Electronics, 21, 250-262(2015).

    [59] T DIALLO P, P BOUTIAUD, R MAHIOU et al. Red luminescence in Pr 3+-doped calcium titanates. Phys. Status Solidi, 160, 255-263(1997).

    [60] BIN LIU, JIAO-JIAO SHI, QING-GUO WANG et al. Crystal growth and yellow emission of Dy:YAlO3. Opt. Mater, 72, 208-213(2017).

    [61] KAI-JIE NING, XIAO-MING HE, LIAN-HAN ZHANG et al. Spectroscopic characteristics of GdVO4:Dy 3+ crystal. Opt. Mater, 37, 745-749(2014).

    [62] FU-GUI YANG, CHAO-YANG TU, HONG-YAN WANG et al. Growth and spectroscopy of Dy 3+ doped in ZnWO4 crystal. Opt. Mater, 29, 1861-1865(2007).

    [63] A LUPEI, V LUPEI, C GHEORGHE et al. Spectroscopic characteristics of Dy 3+ doped Y3Al5O12 transparent ceramics. J. Appl. Phys, 110(2011).

    [64] R BOWMAN, S O’CONNOR, J CONDON N. Diode pumped yellow dysprosium lasers. Opt.Express, 20, 12906-1 2911(2012).

    [65] W RYBA-ROMANOWSKI, G DOMINIAK-DZIK, P SOLARZ et al. Transition intensities and excited state relaxation dynamics of Dy 3+ in crystals and glasses: a comparative study. Opt. Mater, 31, 1547-1554(2009).

    [66] STEFANO BIGOTTA, M TONELLI, E CAVALLI et al. Optical spectra of Dy 3+ in KY3F10 and LiLuF4 crystalline fibers.. Lumin, 130, 13-17(2010).

    [67] G DOMINIAK-DZIK, W RYBA-ROMANOWSKI, R LISIECKI et al. Dy-doped Lu2SiO5 single crystal: spectroscopic characteristics and luminescence dynamics. Appl.Phys.B, 99, 285-297(2009).

    [68] WEI-WEI ZHOU, BO WEI, WANG ZHAO et al. Intense yellow emission in Dy 3+-doped LiGd(MoO4)2 crystal for visible lasers. Opt. Mater., 34, 56-60(2011).

    [69] M MALINOWSKI, P MYZIAK, R PIRAMIDOWICZ et al. Spectroscopic and laser properties of LiNbO3:Dy 3+ crystals. Acta Phys. Pol.A, 1, 181-189(1996).

    [70] J LIMPERT, H ZELLMER, P RIEDEL et al. Laser Oscillation in Yellow and Blue Spectral Range in Dy 3+:ZBLAN. Lasers and Electro-Optics, 2001. CLEO'01. Technical Digest, 353-354(2001).

    [71] ZHONG-CHAO XIA, FU-GUI YANG, LIANG QIAO et al. End pumped yellow laser performance of Dy 3+:ZnWO4. Opt. Commun, 387, 357-360(2017).

    [72] GIACOMO BOLOGNESI, DANIELA PARIS, DAVIDE CALONICO et al. Yellow laser performance of Dy 3+ in co-doped Dy,Tb:LiLuF4. Opt. Lett, 39, 6628-6631(2014).

    [73] PAVEL LOIKO, XAVIER MATEOS, ELENA DUNINA et al. Judd-Ofelt modelling and stimulated-emission cross-sections for Tb 3+ ions in monoclinic KYb(WO4)2 crystal. J. Lumin, 190, 37-44(2017).

    [74] BIN LIU, JIAO-JIAO SHI, QING-GUO WANG et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb:YAlO3. Spectrochim. Acta.A, 200, 58-62(2018).

    [75] S COLAK, K ZWICKER W. Transition rates of Tb 3+ in TbP5O14, TbLiP4O12, and TbAl3 (BO3)4: an evaluation for laser applications. J. Appl. Phys, 54, 2156-2166(1983).

    [76] W METZ P, T MARZAHL D, A MAJID et al. High Power Continuous Wave Visible Tb 3+:LiLuF4 Laser. Advanced Solid State Lasers Conference, ATu1A, 1(2015).

    [77] R KESAVULU C, ANIELLE-CHRISTINE IDAALME SILVA, M-R DOUSTI et al. Concentration effect on the spectroscopic behavior of Tb 3+ ions in zinc phosphate glasses.. Lumin, 165, 77-84(2015).

    [78] C JAMALAIAH B, KUMAR SURESH, A MOHAN BABU et al. Study on spectroscopic and fluorescence properties of Tb 3+-doped LBTAF glasses. Physica B Condens.Matter, 404, 2020-2024(2009).

    [79] I ANDREEV S, R BEDILOV M, O KARAPETYAN G et al. Stimulated radiation of glass activated by terbium. Sov.. Opt. Tech, 34, 819(1967).

    [80] TATSUYA YAMASHITA, YASUTAKE OHISHI. Amplification and lasing characteristics of Tb 3+-doped fluoride fiber in the 0.54 µm band. Jpn.. Appl. Phys, 46, 991-993(2007).

    [81] W METZ P, T MARZAHL D, A MAJID et al. Efficient continuous wave laser operation of Tb 3+-doped fluoride crystals in the green and yellow spectral regions. Laser & Photonics Reviews, 10, 335-344(2016).

    [82] METZ PHILIP WERNER, MARZAHL DANIEL-TIMO, HUBER GÜNTER et al. Performance and wavelength tuning of green emitting terbium lasers. Opt.Express, 17, 5716-5724(2017).

    [84] GRAZYNA DOMINIAK-DZIK. Sm 3+-doped LiNbO3 crystal, optical properties and emission cross-sections.. Alloy. Compd, 391, 26-32(2005).

    [85] D PUGH-THOMAS. Spectroscopic properties and Judd-Ofelt analysis of BaY2F8:Sm 3+. J. Opt. Soc. Am.B, 31, 1777-1785(2014).

    [86] Q WANG G, Y-F LIN, H GONG X et al. Polarized spectral properties of Sm 3+:LiYF4 crystal.. Lumin, 147, 23-26(2014).

    [87] Q WANG G, H GONG X, F LIN Y et al. Polarized spectral properties of Sm 3+:LiLuF4 crystal for visible laser application. Opt. Mater, 37, 229-234(2014).

    [88] T MARZAHL D, W METZ P, C KRANKEL et al. Spectroscopy and laser operation of Sm 3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19).. Opt.Express, 23, 21118-211127(2015).

    [89] N KAZAKOV B, S ORLOV M, V PETROV M et al. Induced emission of Sm 3+ ions in the visible region of the spectrum.. Opt.Spectros, 47, 676-677(1979).

    [90] C FARRIES M, R MORKEL P, E TOWNSEND J. Samarium 3+-doped glass laser operating at 651 nm. Electron. Lett, 24, 709-711(1988).

    [91] P KOOPMANN, S LAMRINI, K SCHOLLE et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm. Opt.Express, 21, 3926-3931(2013).

    [92] M WALSH B, W GREW G, P BARNES N. Energy levels and intensity parameters of Ho 3+ ions in GdLiF4, YLiF4 and LuLiF4.. Phys.-Condens. Mat, 17, 7643-7665(2005).

    [93] C NOSTRAND M, H PAGE R, A PAYNE S et al. Optical properties of Dy 3+-and Nd 3+-doped KPb2Cl5. J. Opt. Soc. Am.B, 18, 264-276(2001).

    [94] K RADEMAKER, F KRUPKE W, H PAGE R et al. Optical properties of Nd 3+-and Tb 3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay. J. Opt. Soc. Am.B, 21, 2117-2129(2004).

    [95] K VORONKO Y, A KAMINSKII A, V OSIKO V et al. Stimulated emission of Ho 3+ in CaF2 at lambda=551.2 nm. ZhETF Pisma Redaktsiiu, 1, 5(1965).

    [96] E CHICKLIS, C NAIMAN, L ESTEROWITZ et al. Deep red laser emission in Ho:YLF. IEEE. Quantum Electron, 13, 893-895(1977).

    [97] F REICHERT, F MOGLA, P-W METZ et al. Prospects of holmium- doped fluorides as gain media for visible solid state lasers. Opt. Mater.Express, 5, 88-101(2015).

    [98] DAVID-S FUNK, J-GARY EDEN. Laser diode-pumped holmium- doped fluorozirconate glass fiber laser in the green (λ-544-549 nm). IEEE. Quantum Electron, 37, 980-992(2001).

    [99] D GARBUZOV, I KUDRYASHOV, W DUBINSKII M. 110, J 0.9. pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser. Appl. Phys. Letter, 87(2005).

    [100] T LI, K BEIL, C KRANKEL et al. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85. μm. Opt. Letter, 37, 2568-2570(2012).

    [101] T JENSEN, A DIENING, G HUBER et al. Investigation of diode- pumped 2.8-μm Er:LiYF4 lasers with various doping levels.. Opt.Letter, 21, 585-587(1996).

    [102] FRANCESCA MOGLIA, SEBASTIAN MULLER, FABIAN REICHERT et al. Efficient upconversion-pumped continuous wave Er 3+:LiLuF4 lasers. Opt. Mater, 42, 167-173(2015).

    [103] F JOHNSON L, J GUGGENHEIM H. Infrared-pumped visible laser. Appl. Phys.Letter, 19, 44-47(1971).

    [104] T DANGER, J KOETKE, R BREDE et al. Spectroscopy and green upconversion laser emission of Er 3+-doped crystals at room temperature.. Appl. Phys, 76, 1413-1422(1994).

    [105] P DORENBOS. The 4f n ↔ 4f n-15d transitions of the trivalent lanthanides in halogenides and chalcogenides.. Lumin, 91, 91-106(2000).

    [106] O TOMA. Emission regimes of a green Er:YLiF4 Laser. IEEE. Quantum Electron, 43, 519-526(2007).

    [107] R BREDE, T DANGER, E HEUMANN et al. Room-temperature green laser emission of Er:LiYF4. Appl. Phys. Lett, 63, 729-730(1993).

    [109] I DASHKEVICH V, N BAGAYEV S, A ORLOVICH V et al. Quasi-continuous wave and continuous wave laser operation of Eu:KGd(WO4)2crystal on a5D07F4 transition. Laser Phys. Lett, 12(2015).

    [110] MAXIM DEMESH, ANATOL YASUKEVICH, VIKTOR KISEL et al. Spectroscopic properties and continuous-wave deep-red laser operation of Eu 3+-doped LiYF4. Opt. Lett, 43, 2364-2367(2018).

    [111] JIAO-JIAO SHI, BIN LIU, QING-GUO WANG et al. Crystal growth and spectral properties of Tb:Lu2O3. Chin. Phys. B, 27(2018).

    Na LI, Bin LIU, Jiao-Jiao SHI, Yan-Yan XUE, Heng-Yu ZHAO, Zhang-Li SHI, Wen-Tao HOU, Xiao-Dong XU, Jun Xu. Research Progress of Rare-earth Doped Laser Crystals in Visible Region[J]. Journal of Inorganic Materials, 2019, 34(6): 573
    Download Citation