• Journal of Inorganic Materials
  • Vol. 34, Issue 6, 573 (2019)
Na LI1, Bin LIU1, Jiao-Jiao SHI1, Yan-Yan XUE1, Heng-Yu ZHAO1, Zhang-Li SHI1, Wen-Tao HOU1, Xiao-Dong XU2、*, and Jun Xu1、*
Author Affiliations
  • 1Key Laboratory of Advanced Microstructure Materials Ministry of Education, Tongji University, Shanghai 200092, China
  • 2School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • show less
    DOI: 10.15541/jim20180403 Cite this Article
    Na LI, Bin LIU, Jiao-Jiao SHI, Yan-Yan XUE, Heng-Yu ZHAO, Zhang-Li SHI, Wen-Tao HOU, Xiao-Dong XU, Jun Xu. Research Progress of Rare-earth Doped Laser Crystals in Visible Region[J]. Journal of Inorganic Materials, 2019, 34(6): 573 Copy Citation Text show less
    Energy levels of visible rare-earth ions in YLF crystal
    1. Energy levels of visible rare-earth ions in YLF crystal
    Polarized absorption spectra of Pr : YAP crystal[18]
    2. Polarized absorption spectra of Pr : YAP crystal[18]
    Polarized fluorescence spectra of Pr : YAP crystal[23]
    3. Polarized fluorescence spectra of Pr : YAP crystal[23]
    Energy level diagram of Pr : SRA crystal[32]
    4. Energy level diagram of Pr : SRA crystal[32]
    Phonon energy distribution of some crystals
    5. Phonon energy distribution of some crystals
    Non-radiative decay rate vs phonon energy of some Pr3+ doped crystals
    6. Non-radiative decay rate vs phonon energy of some Pr3+ doped crystals
    4f-5d band gap vs 3P2 energy level of some Pr3+ doped crystals
    7. 4f-5d band gap vs 3P2 energy level of some Pr3+ doped crystals
    Upper state level lifetime vs phonon energy of some Pr3+ doped crystals
    8. Upper state level lifetime vs phonon energy of some Pr3+ doped crystals
    Polarized absorption spectra of Dy : YAP crystal[60]
    9. Polarized absorption spectra of Dy : YAP crystal[60]
    Polarized fluorescence spectra of Dy : YAP crystal[60]
    10. Polarized fluorescence spectra of Dy : YAP crystal[60]
    Polarized absorption spectra of Tb : YAP crystal[74]
    11. Polarized absorption spectra of Tb : YAP crystal[74]
    Polarized fluorescence spectra of Tb : YAP crystal[74]
    12. Polarized fluorescence spectra of Tb : YAP crystal[74]
    Polarized absorption spectra of Sm : YAP crystal[83]
    13. Polarized absorption spectra of Sm : YAP crystal[83]
    Polarized fluorescence spectra of Sm : YAP crystal[83]
    14. Polarized fluorescence spectra of Sm : YAP crystal[83]
    Output power vs laser wavelength of Pr3+, Dy3+, Tb3+, Sm3+, Ho3+, Er3+, Eu3+ doped some common crystals
    15. Output power vs laser wavelength of Pr3+, Dy3+, Tb3+, Sm3+, Ho3+, Er3+, Eu3+ doped some common crystals
    TransitionsParametersLLFYLFGLFLaF3BYFLMAASLYAPSRA
    Absorption
    3H43P2labs/nmσabs /(×10-20, cm2)FWHMabs /nm44410.31.704449.01.804447.81.94421.654453.7-4441.27.14441.3-4495.645.64451.149.59
    Emission
    3P13H5lem/nmσem /(×10-20, cm2)FWHMem /nmσemτf /(×10-20, cm2·μs)5223~2113.75223~2107.152231130.85370.7~335.75220.4~417.95300.2548.65422-765338.81.9168.65251.359.841.5
    3P03H6lem/nmσem /(×10-20, cm2)FWHMem /nmσemτf /(×10-20, cm2·μs)60712~3454.860714~3499.860713-566.86102.9~6.9147.960724.71.21062.16253.711127.76202.9-110.262125.011.56479.26223.526.53108.3
    3P03F2lem/nmσem /(×10-20, cm2)FWHMem /nmσemτf /(×10-20, cm2·μs)64021~0.7795.964022~0.7785.464023-10036351.2~161.263912.10.6520.36472.36.679.46438.5-3236624.711.2890.264410.375.07319.0
    3P03F4lem/nmσem /(×10-20, cm2)FWHMem /nmσemτf /(×10-20, cm2·μs)7207~1265.37209~1321.372016-697.67206.6~3336.67217.31.3309.67283.38.5113.972511-41874710.371.54198.77255.754.35176.9
    τf/μs37.9035.7043.6514334.53819.1630.76
    Ref.[23][23][23][24][25-26][27][28]This work
    Table 1. Lasing wavelength λem, emission cross-section σem and σemτ for the 3P03H6 transition of Pr3+ doped YAP and other crystals
    Hostsλem/nmPolarizationsLaser transitionsηslope/%Pout/mWPthr/mWPump sourceYear
    YLF491σ3PJ3H46702852w-OPSL2014[44]
    523π3PJ3H545~4200>5002×2w-OPSL2016[17]
    546π3PJ3H56020001202w-OPSL2014[45]
    605σ3PJ3H6252100~1500Blue-LD2017[46]2017[46]
    640σ3PJ3F2504800~500Blue-LD
    698σ3PJ3F336130078InGaN-LD2016[47]
    721π3PJ3F4531000162w-OPSL2014[47]
    LLF523E//c3P03H55652.7102-OPSL2007[48]
    607E//c3P03H63134.5262-OPSL2007[48]
    640E//c3P03F25652.7392-OPSL2007[48]
    722E//c3P03F44650312-OPSL2007[48]
    BYF495E//X3PJ3H4272011632w-OPSL2014[44]
    607E//Y3PJ3H612.699264Blue-LD2014[49]
    639E//Y3PJ3F26.460146Blue-LD2014[49]
    KYF554-3PJ3H527121166InGaN-LD2013[50]
    610-3PJ3H61897162InGaN-LD2013[50]
    645-3PJ3F23826830InGaN-LD2013[50]
    YGF523E//a3PJ3H51163148InGaN-LD2015[21]
    538E//b3PJ3H524140135InGaN-LD2015[21]
    604E//a3PJ3H61310572InGaN-LD2015[21]
    638E//a3PJ3F216128188InGaN-LD2015[21]
    700E//a3PJ3F4187847InGaN-LD2015[21]
    724E//b3PJ3F42011748InGaN-LD2015[21]
    CaF2642-3PJ3F27.522305InGaN-LD2017[51]
    LaF3537π3PJ3H51615159InGaN-LD2012[24]
    612π3PJ3H6152098InGaN-LD2012[24]
    635c3PJ3F2162395InGaN-LD2012[24]
    720π3PJ3F4378010InGaN-LD2012[24]
    ASL620π3PJ3H61150~5102w-OPSL2018[52]2018[52]2018[52]
    643π3PJ3F227160~2002w-OPSL
    725π3PJ3F437318~2802w-OPSL
    LMA620σ3PJ3H622.9~1002w-OPSL2012[27]
    648σ3PJ3F2410.1~902w-OPSL2012[27]
    729σ3PJ3F41263.7~252w-OPSL2012[27]
    YAP547E//c3PJ3H56.137320InGaN-LD2013[53]
    662E//c3PJ3F2927.4680GaN-LD2011[54]
    747E//b3PJ3F4454903002×InGaN-LD2014[55]
    SRA525-3PJ3H5-36~10002w-OPSL2013[56]
    623σ3PJ3H611114~2004×InGaN-LD2014[15]
    644-3PJ3F2371065~5002w-OPSL2013[56]
    724σ3PJ3F45056415.54×InGaN-LD2014[15]
    Table 2. Visible laser output of Pr3+ doped crystals
    Hostsσabs/(×10-21, cm2)β/%σem/(×10-20, cm2)τf/μsRef.
    YAG1.650.961.50376[64]
    YAl(BO3)4-65.901.90520[65]
    LiLuF4-65.401.02582[66]
    Lu2SiO4-61.00.74509[67]
    KY3F10-59.80.83440[66]
    Li2Gd4(MoO4)7σ: 2.5π: 4.4σ:72.0π: 71.9σ: 1.45π: 1.34139[68]
    YAPa:0.743b:0.690c:0.870a:88.5b:88.7c:87.8a:0.298b:0.450c:0.452185This work
    Table 3. Spectroscopic parameters of Dy3+ doped YAP and other crystals
    Crystalsλem/nmPolarizationsLaser transitionsηslope/%Pout/mWPthr/mWTypeYear
    Dy,Tb : LLF574σ4F9/26H13/21355320CW2014[72]
    Dy,Eu : YLF574σ4F9/26H13/21047244CW2016[17]2016[17]2016[17]
    Dy : LLF578σ4F9/26H13/2417188Self-pulsed
    661π4F9/26H11/224143Self-pulsed
    Dy : YAG583-4F9/26H13/212150-Self-pulsed2012[64]
    Dy : ZnWO4575E//b4F9/26H13/213110550CW2017[71]
    Table 4. Laser output of Dy3+ doped some common laser crystal
    Hostlabs/nmσabs/(×10-22, cm2)lem/nmσem/(×10-22, cm2)τf/msRef.
    LLF488.83.0585~114.8[76]
    TPP4851.35871.03.4[75]
    TLP4872.25881.03.7[75]
    TAB4833.65921.00.8[75]
    PZABP--5820.70.42[77]
    LBTAF--5850.581.27[78]
    YAPE//a4863.35901.721.72This work
    E//b4845.25912.73
    E//c4844.15882.65
    Table 5. Spectroscopic parameters of Tb3+ doped YAP and other crystals
    Crystalsλem/nmPolarizationsLaser transitionsηslope/%Pout/mWPthr/mWPump sourceYear
    Tb : YLF542σ5D47F55515882w-OPSL2016[81]
    587π5D47F42271322w-OPSL
    Tb : LLF542σ5D47F5521130322w-OPSL
    587π5D47F414821072w-OPSL
    Tb : KYF545σ5D47F534793252w-OPSL
    584π5D47F4518382w-OPSL
    Tb : BLuF546σ5D47F546270182w-OPSL
    Tb : CaF2541-5D47F548103~342w-OPSL2017[82]
    Table 6. Laser output of Tb3+ doped some common laser crystal
    Samplelabs/nmσabs/(×10-20, cm2)FWHMabs /nmlem/nmσem/(×10-21, cm2)FWHMem/nmτf/msRef.
    Sm : SrAl12O19400(σ)8.5(σ)-593(σ)1.2(σ)-3.4[88]
    Sm : LiLuF4401(σ)1.04(σ)2.3(σ)606(π)1.3(π)7.5(σ)4.8[87-88]
    401(π)1.51(π)3.1(π)9.5(π)
    Sm : LiYF4401(σ)0.72(σ)3(σ)597(σ)0.679(σ)7.5(σ)4.8[86]
    401(π)1.37(π)2(π)605(π)1.039(π)9.5(π)
    Sm : YAP409(E//a)0.25(E//a)8.4(E//a)604(E//a)0.47(E//a)6.29(E//a)0.59This work
    409(E//b)0.67(E//b)10.2(E//b)604(E//b)1.01(E//b)6.32(E//b)
    409(E//c)0.86(E//c)9.4(E//c)610(E//c)0.96(E//c)3.26(E//c)
    Table 7. Spectroscopic parameters of Sm3+ doped YAP and other crystals
    Na LI, Bin LIU, Jiao-Jiao SHI, Yan-Yan XUE, Heng-Yu ZHAO, Zhang-Li SHI, Wen-Tao HOU, Xiao-Dong XU, Jun Xu. Research Progress of Rare-earth Doped Laser Crystals in Visible Region[J]. Journal of Inorganic Materials, 2019, 34(6): 573
    Download Citation