• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0729001 (2022)
Yuxia Zheng1、2, Tuersun Paerhatijiang1、2、*, Abulaiti Remilai1、2, Dengpan Ma1、2, and Long Cheng1、2
Author Affiliations
  • 1School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi , Xinjiang 830054, China
  • 2Key Laboratory of Mineral Luminescent Material and Microstructure of Xinjiang, Urumqi , Xinjiang 830054, China
  • show less
    DOI: 10.3788/LOP202259.0729001 Cite this Article Set citation alerts
    Yuxia Zheng, Tuersun Paerhatijiang, Abulaiti Remilai, Dengpan Ma, Long Cheng. Particle Size and Concentration of Monodisperse Au-Ag Alloy Nanospheres Retrieved by Light Extinction Method[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0729001 Copy Citation Text show less

    Abstract

    Variation of light extinction properties of monodisperse Au-Ag alloy nanospheres with particle size and wavelength are analyzed based on Mie theory. In the theoretical calculations, the dielectric function of Au-Ag alloy nanoparticles is corrected for the effect of the reduced mean free path of the free electrons in metal nanoparticles. Three fitting equations for determining particle size and concentration methods based on the extinction properties are proposed in this paper, including resonance wavelength method, dual-wavelength extinction method, and improved dual-wavelength extinction method. The results show that as long as the extinction spectrum of the particles is measured, the particle size and concentration can be retrieved by using the fitting equations. In addition, comparing the sensitivity and the particle size range of three methods are found that the resonance wavelength method is easier and faster than other methods.
    T=It/Ii=exp-τL
    τ=NCextλ,D,np,nm
    A=log10Ii/It = log101/T =LNln10Cextλ,D,np,nm
    Cext=2πk2n=12n+1Rean+bn
    εω,x=ε-[ωpx]2ω2+iωΓpx+εCP1[ω,ω01x,ωg1x,Γ1x,A1x]+εCP2[ω,ω02x,Γ2x,A2x]
    ωpx=x22ωpAu-4ωpAuAg+2ωpAg+x-ωpAu+4ωpAuAg-3ωpAg+ωpAg
    Γp=Γp-Bulk+αhvfLeff
    nm2=1+0.5684027565λ2λ2-0.005101829712+0.1726177391λ2λ2-0.01821153936+0.02086189578λ2λ2-0.02620722293+0.1130748688λ2λ2-10.69792721
    S=Δy/ΔD
    λres(D)=λ0+f1D+f2D2
    D(λres) =-f1+f12-4f2(λ0-λres)2f2
    N=ln(10)A(λres)LCext(λres,D,np,nm)
    Rλ1,λ2=Aλ1/Aλ2
    R450 nm,600 nmD=m0+m3m2π/2×exp-2D-m1m22,
    DR450 nm,600 nm=m1+m2-12lnR450 nm,600 nm-m0m2π/2m3
    N=ln(10)A(λ1)LCext(λ1,D,np,nm)=ln(10)A(λ2)LCext(λ2,D,np,nm)
    Rλres,λ2=Aλres/Aλ2
    Rλres,650 nmD=R0+R3R2π2exp-2D-R1R22,
    DRλres,650 nm=R1+R2-12lnRλres,650 nm-R0R2π2R3
    N=ln(10)A(λres)LCext(λres,D,np,nm)=ln(10)A(λ2)LCext(λ2,D,np,nm)
    λres(D)=λ1+f3D+f4D2
    D(λres) =-f3+f32-4f4(λ1-λres)2f4
    N=ln(10)A(λres)LCext(λres,D,np,nm)
    Yuxia Zheng, Tuersun Paerhatijiang, Abulaiti Remilai, Dengpan Ma, Long Cheng. Particle Size and Concentration of Monodisperse Au-Ag Alloy Nanospheres Retrieved by Light Extinction Method[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0729001
    Download Citation