• Chinese Journal of Quantum Electronics
  • Vol. 28, Issue 4, 429 (2011)
Juan HE*, Zhi-yong DING, Tao WU, Li-zhi YU, and Zhi-xiang NI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2011.04.007 Cite this Article
    HE Juan, DING Zhi-yong, WU Tao, YU Li-zhi, NI Zhi-xiang. Implementing quantum controlled phase gates with trapped ions[J]. Chinese Journal of Quantum Electronics, 2011, 28(4): 429 Copy Citation Text show less
    References

    [1] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation [C]. Proc. R. Soc. London, Ser. A, 1992, 439: 553.

    [2] Sleator T, Weinfurter H. Realizable universal quantum logic gates [J]. Phys. Rev. Lett., 1995, 74: 4087-4090.

    [3] Monz T, Kim K, Hansel W, et al. Realization of quantum Toffoli gate with trapped ions [J]. Phys. Rev. Lett., 2009, 102: 040501.

    [4] Zheng S B. High-speed geometric quantum phase gates for trapped ions in thermal motion [J]. Phys. Rev. A, 2006, 74: 032322.

    [6] Xiao Y F, Zou X B, et al. Implementing a conditional -qubit phase gate in a largely detuned optical cavity [J]. Phys. Rev. A, 2007, 75: 014302.

    [7] Song K H, Xiang S H, Liu Q, et al. Quantum computation and W-state generation using superconducting flux qubits coupled to a cavity without geometric and dynamical manipulation [J]. Phys. Rev. A, 2007, 75: 032347.

    [8] Xue Z Y, Zhang G, Dong P, et al. Quantum controlled phase gate and cluster states generation via two superconducting quantum interference devices in a cavity [J]. Eur. Phys. J. B, 2006, 52: 333-336.

    [9] Yang C P, Cun S I. Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED [J]. Phys. Rev. A, 2003, 67: 042311-1-8.

    [10] Yang C P, Han S Y. -qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator [J]. Phys. Rev. A, 2005, 72: 032311.

    [11] Raimand J M, Brune M, et al. Manipulating quantum entanglement with atoms and photons in a cavity [J]. Rev. Mod. Phys., 2001, 73: 565.

    [12] Negrevergne C, Mahesh T S, et al. Benchmarking quantum control methods on a 12-qubit system [J]. Phys. Rev. Lett., 2006, 96: 170501.

    [13] Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics [J]. Nature, 2001, 409: 46-52.

    [14] Garcoa-Ripoll J J , Zoller P , Cirac J I. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing [J]. Phys. Rev. Lett., 2003, 91: 157901.

    [15] Cirac J I, Zoller P. Quantum computation with cold tapped ions [J]. Phys. Rev. Lett., 1995, 74: 4091.

    [16] Zheng S B. Quantum logic gates for two atoms with a single resonant interaction [J]. Phys. Rev. A, 2005, 71: 062335.

    [17] Srensen A, Mlmer K. Quantum computation with ions in thermal motion [J]. Phys. Rev. Lett., 1999, 82: 1971.

    [18] Zheng S B. Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion [J]. Phys. Rev. A, 2003, 68: 035801.

    [19] Zheng S B. Simplified quantum logic gates with trapped ions in thermal motion [J]. Opt. Commun., 2000, 180: 111-113.

    [20] Zheng S B. Generation of entangled states of multiple trapped ions in thermal motion [J]. Phys. Rev. A, 2004, 70: 045804.

    [21] Roos C F, Riebe M, et al. Control and measurement of three-qubit entangled states [J]. Science, 2004, 304: 1478.

    HE Juan, DING Zhi-yong, WU Tao, YU Li-zhi, NI Zhi-xiang. Implementing quantum controlled phase gates with trapped ions[J]. Chinese Journal of Quantum Electronics, 2011, 28(4): 429
    Download Citation