• Laser & Optoelectronics Progress
  • Vol. 58, Issue 13, 1306011 (2021)
Yahui Wang1、2, Le Zhao1, Qian Zhang1、2, Lijun Qiao1, Tao Wang1, Jianzhong Zhang1、2, and Mingjiang Zhang1、2、*
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • 2College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • show less
    DOI: 10.3788/LOP202158.1306011 Cite this Article Set citation alerts
    Yahui Wang, Le Zhao, Qian Zhang, Lijun Qiao, Tao Wang, Jianzhong Zhang, Mingjiang Zhang. Progress in Chaotic Brillouin Optical Correlation-Domain Analysis[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306011 Copy Citation Text show less
    References

    [1] Grattan K T V, Meggitt B T[M]. Optical fiber sensor technology(1999).

    [2] Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 9, 57-79(2003).

    [3] Lu P, Lalam N, Badar M et al. Distributed optical fiber sensing: review and perspective[J]. Applied Physics Reviews, 6, 041302(2019).

    [4] Walter F, Gräff D, Lindner F et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 11, 2436(2020).

    [5] Yang Z C, Feng Y F, Sang W B et al. Application research on health monitoring of long bridge based on distributed optical fiber sensing[J]. Hans Journal of Civil Engineering, 9, 532-539(2020).

    [6] Ba D X, Dong Y K. Distributed optical fiber sensor and its potential applications in health monitoring of aerospace structures[J]. Journal of Astronautics, 41, 730-738(2020).

    [7] Ren L, Jiang T, Jia Z G et al. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology[J]. Measurement, 122, 57-65(2018).

    [8] Zhang Z L, Gao L, Sun Y Y et al. Strain transfer law of distributed optical fiber sensor[J]. Chinese Journal of Lasers, 46, 0410001(2019).

    [9] Bao X Y, Chen L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 11, 4152-4187(2011).

    [10] Motil A, Bergman A, Tur M. State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 78, 81-103(2016).

    [11] Zhao L J, Wang H Q, Xu Z N et al. Analysis of factors affecting accuracy of Brillouin frequency shift extraction based on similarity matching[J]. Chinese Journal of Lasers, 47, 0506003(2020).

    [12] Wang T, Tian F, Tang W Q et al. Brillouin frequency shift extraction method for distributed optical fiber temperature sensing system[J]. Laser & Optoelectronics Progress, 56, 170631(2019).

    [13] Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory[J]. Journal of Lightwave Technology, 7, 1170-1176(1989).

    [14] Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique: proposal, experiment and simulation[J]. IEICE Transactions on Electronics, 84, 405-412(2001).

    [15] Bao X, Webb D J, Jackson D A. 32-km distributed temperature sensor based on Brillouin loss in an optical fiber[J]. Optics Letters, 18, 1561-1563(1993).

    [16] Soto M A, Bolognini G, di Pasquale F et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 35, 259-261(2010).

    [17] Soto M A, Bolognini G, di Pasquale F et al. Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques[J]. Measurement Science and Technology, 21, 094024(2010).

    [18] Soto M A, le Floch S, Thévenaz L. Bipolar optical pulse coding for performance enhancement in BOTDA sensors[J]. Optics Express, 21, 16390-16397(2013).

    [19] Yang Z S, Li Z L, Zaslawski S et al. Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers[J]. Optics Express, 26, 16505-16523(2018).

    [20] Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100 km sensing length[J]. Optics Letters, 36, 277-279(2011).

    [21] Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs[J]. Journal of Lightwave Technology, 30, 1161-1167(2012).

    [22] Dong Y K, Wang B Z, Pang C et al. 150  km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme[J]. Optics Letters, 43, 4679-4682(2018).

    [23] Wang B Z, Fan B H, Zhou D W et al. High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique[J]. Photonics Research, 7, 652-658(2019).

    [24] Jia X H, Rao Y J, Yuan C X et al. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping[J]. Optics Express, 21, 24611-24619(2013).

    [25] Kim Y H, Song K Y. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification[J]. Optics Express, 25, 14098-14105(2017).

    [26] Xu S R, Ma H L, Jia X H et al. Long-distance vector Brillouin optical time-domain analysis sensors using distributed Brillouin amplification with frequency-comb pump parallel demodulation[J]. Applied Physics Express, 13, 112004(2020).

    [27] Foaleng S M, Tur M, Beugnot J C et al. High spatial and spectral resolution long-range sensing using Brillouin echoes[J]. Journal of Lightwave Technology, 28, 2993-3003(2010).

    [28] Yang Z S, Hong X B, Lin W Q et al. Evaluating and overcoming the impact of second echo in Brillouin echoes distributed sensing[J]. Optics Express, 24, 1543-1558(2016).

    [29] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008).

    [30] Brown A W, Colpitts B G, Brown K. Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution[J]. Journal of Lightwave Technology, 25, 381-386(2007).

    [31] Hu X X, Wang Y H, Zhao L et al. Research progress in Brillouin optical correlation domain analysis technology[J]. Chinese Journal of Lasers, 48, 0100001(2021).

    [32] Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques[J]. Optical Fiber Technology, 19, 700-719(2013).

    [33] Zadok A, Antman Y, Primerov N et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 6, L1-L5(2012).

    [34] Cohen R, London Y, Antman Y et al. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission[J]. Optics Express, 22, 12070-12078(2014).

    [35] Song K Y, He Z Y, Hotate K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis[J]. Optics Letters, 31, 2526-2528(2006).

    [36] Ba D X, Li Y, Yan J L et al. Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying[J]. Optics Express, 27, 36197-36205(2019).

    [37] Matsumoto M, Akai S. High-spatial-resolution Brillouin optical correlation domain analysis using short-pulse optical sources[J]. Journal of Lightwave Technology, 37, 6007-6014(2019).

    [38] Zarifi A, Stiller B, Merklein M et al. Highly localized distributed Brillouin scattering response in a photonic integrated circuit[J]. APL Photonics, 3, 036101(2018).

    [39] Kim Y H, Lee K, Song K Y. Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement[J]. Optics Express, 23, 33241-33248(2015).

    [40] Ryu G, Kim G T, Song K Y et al. Brillouin optical correlation domain analysis enhanced by time-domain data processing for concurrent interrogation of multiple sensing points[J]. Journal of Lightwave Technology, 35, 5311-5316(2017).

    [41] Elooz D, Antman Y, Levanon N et al. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis[J]. Optics Express, 22, 6453-6463(2014).

    [42] Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light: Science & Applications, 5, e16074(2016).

    [43] Shlomi O, Preter E, Ba D X et al. Double-pulse pair Brillouin optical correlation-domain analysis[J]. Optics Express, 24, 26867-26876(2016).

    [44] London Y, Antman Y, Preter E et al. Brillouin optical correlation domain analysis addressing 440000 resolution points[J]. Journal of Lightwave Technology, 34, 4421-4429(2016).

    [45] Ryu G, Kim G T, Song K Y et al. 50 km-range Brillouin optical correlation domain analysis with first-order backward distributed Raman amplification[J]. Journal of Lightwave Technology, 38, 5199-5204(2020).

    [46] Wang B, Fan X Y, Fu Y X et al. Dynamic strain measurement with kHz-level repetition rate and centimeter-level spatial resolution based on Brillouin optical correlation domain analysis[J]. Optics Express, 26, 6916-6928(2018).

    [47] Wang B, Fan X Y, Fu Y X et al. Distributed dynamic strain measurement based on dual-slope-assisted Brillouin optical correlation domain analysis[J]. Journal of Lightwave Technology, 37, 4573-4583(2019).

    [48] Zhang M J, Wang Y C. Review on chaotic lasers and measurement applications[J/OL]. Journal of Lightwave Technology(2020). https:∥ieeexplore.ieee.org/document/9290365

    [49] Zhang J Z, Zhang M T, Zhang M J et al. Chaotic Brillouin optical correlation-domain analysis[J]. Optics Letters, 43, 1722-1725(2018).

    [50] Zhang J Z, Feng C K, Zhang M J et al. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature[J]. Optics Express, 26, 6962-6972(2018).

    [51] Zhang J Z, Wang Y H, Zhang M J et al. Time-gated chaotic Brillouin optical correlation domain analysis[J]. Optics Express, 26, 17597-17607(2018).

    [52] Wang Y H, Zhang M J, Zhang J Z et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 37, 3706-3712(2019).

    [53] Zhang Q, Wang Y H, Zhang M J et al. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser[J]. Acta Physica Sinica, 68, 104208(2019).

    [54] Wang Y H, Zhao L, Zhang M J et al. Dynamic strain measurement by a single-slope-assisted chaotic Brillouin optical correlation-domain analysis[J]. Optics Letters, 45, 1822-1825(2020).

    [55] Zhao L, Wang Y H, Hu X X et al. Effect of chaotic time delay signature on Brillouin gain spectrum in the slope-assisted chaotic BOCDA[J]. Optics Express, 28, 18189-18201(2020).

    [56] Wang Y H, Zhao L, Hu X X et al. High-accuracy dual-slope-assisted chaotic Brillouin fiber dynamic strain measurement[J]. Acta Physica Sinica, 70, 100704(2021).

    [57] Zhao L, Wang Y H, Hu X X et al. Improvement of strain measurement accuracy and resolution by dual-slope-assisted chaotic Brillouin optical correlation domain analysis[J]. Journal of Lightwave Technology, 39, 3312-3318(2021).

    [58] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).

    [59] Boyd R W[M]. Nonlinear optics(2003).

    [60] Peled Y, Motil A, Yaron L et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 19, 19845-19854(2011).

    [61] Motil A, Danon O, Peled Y et al. Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor[J]. IEEE Photonics Technology Letters, 26, 797-800(2014).

    [62] Qiao L J, Lü T S, Xu Y et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 44, 5394-5397(2019).

    [63] Yang Q, Qiao L J, Zhang M J et al. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber[J]. Optics Letters, 45, 1750-1753(2020).

    [64] Zhang M J, Xu Y H, Zhao T et al. A hybrid integrated short-external-cavity chaotic semiconductor laser[J]. IEEE Photonics Technology Letters, 29, 1911-1914(2017).

    [65] Li M W, Zhang X C, Zhang J Z et al. Long-range and high-precision fault measurement based on hybrid integrated chaotic laser[J]. IEEE Photonics Technology Letters, 31, 1389-1392(2019).

    Yahui Wang, Le Zhao, Qian Zhang, Lijun Qiao, Tao Wang, Jianzhong Zhang, Mingjiang Zhang. Progress in Chaotic Brillouin Optical Correlation-Domain Analysis[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306011
    Download Citation