• Laser & Optoelectronics Progress
  • Vol. 55, Issue 5, 051202 (2018)
Lianjun Jia*, Tianping Zhang, Mingzheng Liu, Juanjuan Chen, and Yanhui Jia
Author Affiliations
  • Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000, China
  • show less
    DOI: 10.3788/LOP55.051202 Cite this Article Set citation alerts
    Lianjun Jia, Tianping Zhang, Mingzheng Liu, Juanjuan Chen, Yanhui Jia. Influence of Accelerator Grid Voltage on Grid Performance of Dual Stage Ion Optical System[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051202 Copy Citation Text show less
    Calculation area and boundary conditions
    Fig. 1. Calculation area and boundary conditions
    Flow chart of simulation calculation
    Fig. 2. Flow chart of simulation calculation
    Equipotential line graph under different accelerator grid voltages. (a) -150 V; (b) -180 V; (c) -200 V;(d) -250 V; (e) -300 V
    Fig. 3. Equipotential line graph under different accelerator grid voltages. (a) -150 V; (b) -180 V; (c) -200 V;(d) -250 V; (e) -300 V
    Space position distribution of beam ions. (a) -300 V; (b) -250 V; (c) -200 V; (d) -180 V; (e) -150 V
    Fig. 4. Space position distribution of beam ions. (a) -300 V; (b) -250 V; (c) -200 V; (d) -180 V; (e) -150 V
    Effect of accelerator grid voltage on beam divergence angle
    Fig. 5. Effect of accelerator grid voltage on beam divergence angle
    Effect of accelerator grid voltage on impingement CEX ion number. (a) -150 V; (b) -180 V; (c) -200 V; (d) -250 V; (e) -300 V
    Fig. 6. Effect of accelerator grid voltage on impingement CEX ion number. (a) -150 V; (b) -180 V; (c) -200 V; (d) -250 V; (e) -300 V
    Effect of acceleration grid voltage on impingement CEX ion current. (a) Wall of hole; (b) upstream and downstream surface of accelerator grid
    Fig. 7. Effect of acceleration grid voltage on impingement CEX ion current. (a) Wall of hole; (b) upstream and downstream surface of accelerator grid
    (a) Sputtering yield and (b) sputtering rate under different accelerator grid voltages
    Fig. 8. (a) Sputtering yield and (b) sputtering rate under different accelerator grid voltages
    Beam flow photo with the accelerator grid voltage of -250 V
    Fig. 9. Beam flow photo with the accelerator grid voltage of -250 V
    Screen grid apertureradius /mmExtraction grid apertureradius /mmExtraction stagegap /mmAccelerator grid apertureradius /mmBeamcurrent /mA
    1.00.71.00.7100
    Table 1. Screen grid geometrical parameters and beam current of duel stage accelerating ion optical system
    Screengrid voltage /VExtractiongrid voltage /VAccelerator gridvoltage /VAnode propellant massflow rate /(mg·s-1)Cathodes propellant massflow rate /(mg·s-1)
    68204820-150, -180, -200,-250, -3000.20.05
    Table 2. Operating parameters of duel stage accelerating ion thruster
    Accelerator gridvoltage /VImpingement CEXion numberCEX ion averageenergy /eVPercent of CEX ion with energyover 1 keV /%
    -1502774950615.6
    -1802805150515.3
    -2002817650415.3
    -2502781550415.1
    -3002976450816.0
    Table 3. Simulation results of acceleration grid impingement CEX ion in the hole wall
    Lianjun Jia, Tianping Zhang, Mingzheng Liu, Juanjuan Chen, Yanhui Jia. Influence of Accelerator Grid Voltage on Grid Performance of Dual Stage Ion Optical System[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051202
    Download Citation