• Photonics Research
  • Vol. 11, Issue 7, 1339 (2023)
Zongliang Xie1、2、3、†, Kaiyuan Yang1、2、3、†, Yang Liu1、2、†, Tianrong Xu1、2, Botao Chen1、2, Xiafei Ma1、2, Yong Ruan1、2、3, Haotong Ma1、2、3、4, Junfeng Du1、2, Jiang Bian1、2、3, Dun Liu2, Lihua Wang2、3, Tao Tang1、2、3, Jiawei Yuan1、2, Ge Ren1、2、3, Bo Qi1、2、3、*, and Hu Yang1、2、3、5
Author Affiliations
  • 1Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4e-mail: mahaotong@163.com
  • 5e-mail: yanghu@ioe.ac.cn
  • show less
    DOI: 10.1364/PRJ.486637 Cite this Article Set citation alerts
    Zongliang Xie, Kaiyuan Yang, Yang Liu, Tianrong Xu, Botao Chen, Xiafei Ma, Yong Ruan, Haotong Ma, Junfeng Du, Jiang Bian, Dun Liu, Lihua Wang, Tao Tang, Jiawei Yuan, Ge Ren, Bo Qi, Hu Yang. 1.5-m flat imaging system aligned and phased in real time[J]. Photonics Research, 2023, 11(7): 1339 Copy Citation Text show less

    Abstract

    Flat optics has been considered promising for constructions of spaceborne imaging systems with apertures in excess of 10 m. Despite recent advances, there are long-existing challenges to perform in-phase stitching of multiple flat optical elements. Phasing the segmented planar instrument has remained at the proof of concept. Here, we achieve autonomous system-level cophasing of a 1.5-m stitching flat device, bridging the gap between the concept and engineering implementation. To do so, we propose a flat element stitching scheme, by manipulating the point spread function, which enables our demonstration of automatically bringing seven flat segments’ tip/tilt and piston errors within the tolerance. With phasing done, the 1.5-m system has become the largest phased planar instrument ever built in the world, to our knowledge. The first demonstration of phasing the large practical flat imaging system marks a significant step towards fielding a 10-m class one in space, also paving the way for ultrathin flat imaging in various remote applications.
    M=[MTFnph1T(x),MTFnph2T(x),,MTFnphiT(x)]T,i=1,2,,N,

    View in Article

    M[expT((xp1)22σ12),expT((xp2)22σ22),,expT((xpi)22σi2)]T,i=1,2,,N,

    View in Article

    pcoarse[max(m1),max(m2),,max(mi)],i=1,2,,N,

    View in Article

    pfine=[PTFph1,PTFph2,,PTFphi],i=1,2,,N.

    View in Article

    argmaxP,Qi=1N(ε(min(PiQj,k2)D2λf)),j=1,2,,N1,k=j+1,j+2,,N,

    View in Article

    (αβZ)beam=Q(ABC)mirror=(23b13b13b01b1b131313)(ABC)mirror,(B1)

    View in Article

    (ABC)mirror=Q1(αβZ)beam=(0b31b2b31b2b31)(αβZ)beam,(B2)

    View in Article

    cx=xyxf(x,y)xyf(x,y),cy=xyyf(x,y)xyf(x,y),(C1)

    View in Article

    Zongliang Xie, Kaiyuan Yang, Yang Liu, Tianrong Xu, Botao Chen, Xiafei Ma, Yong Ruan, Haotong Ma, Junfeng Du, Jiang Bian, Dun Liu, Lihua Wang, Tao Tang, Jiawei Yuan, Ge Ren, Bo Qi, Hu Yang. 1.5-m flat imaging system aligned and phased in real time[J]. Photonics Research, 2023, 11(7): 1339
    Download Citation