• Photonics Research
  • Vol. 2, Issue 4, B18 (2014)
Yonatan Stern1, Kun Zhong1、2, Thomas Schneider3, Ru Zhang2, Yossef Ben-Ezra4, Moshe Tur5, and and Avi Zadok1、*
Author Affiliations
  • 1Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel
  • 2Beijing University of Post and Telecommunications, Beijing 100876, China
  • 3Institut für Hochfrequenztechnik, Hochschule für Telekommunikation, D-04277 Leipzig, Germany
  • 4Faculty of Engineering, Holon Institute of Technology, 52 Golomb St., Holon 5810201, Israel
  • 5School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
  • show less
    DOI: 10.1364/PRJ.2.000B18 Cite this Article Set citation alerts
    Yonatan Stern, Kun Zhong, Thomas Schneider, Ru Zhang, Yossef Ben-Ezra, Moshe Tur, and Avi Zadok. Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering[J]. Photonics Research, 2014, 2(4): B18 Copy Citation Text show less
    References

    [1] J. Capmany, B. Ortega, D. Pastor. A tutorial on microwave photonic filters. J. Lightwave Technol., 24, 201-229(2006).

    [2] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [3] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [4] S. Pan, J. Yao. UWB-over-fiber communications: modulation and transmission. J. Lightwave Technol., 28, 2445-2455(2010).

    [5] H. Al-Raweshidi, S. Komaki. Radio Over Fiber Technologies for Mobile Communications Networks(2002).

    [6] D. E. Dudgeon. Fundamentals of digital array processing. Proc. IEEE, 65, 898-904(1977).

    [7] J. Capmany, B. Ortega, D. Pastor, S. Sales. Discrete-time optical processing of microwave signals. J. Lightwave Technol., 23, 702-723(2005).

    [8] B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw. Fiber-optic lattice signal processing. Proc. IEEE, 72, 909-930(1984).

    [9] A. Loayssa, J. Capmany, M. Sagues, J. Mora. Demonstration of incoherent microwave photonic filters with all-optical complex coefficients. IEEE Photon. Technol. Lett., 18, 1744-1746(2006).

    [10] Y. Zhang, S. Pan. A complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter. IEEE Photon. Technol. Lett., 25, 187-189(2013).

    [11] A. Mokhtari, S. Preussler, K. Jamshidi, M. Akbari, T. Schneider. Fully-tunable microwave photonic filter with complex coefficients using delay lines based on frequency-time conversions. Opt. Express, 20, 22728-22734(2012).

    [12] A. Mokhtari, K. Jamshidi, S. Preussler, A. Zadok, T. Schneider. Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines. Opt. Express, 21, 21702-21707(2013).

    [13] S. Xiao, A. M. Weiner. Coherent photonic processing of microwave signals using spatial light modulators: programmable amplitude filters. J. Lightwave Technol., 24, 2523-2529(2006).

    [14] T. X. Huang, X. Yi, R. A. Minasian. Single passband microwave photonic filter using continuous-time impulse response. Opt. Express, 19, 6231-6242(2011).

    [15] R. W. Boyd. Nonlinear Optics(2003).

    [16] T. Horiguchi, T. Kurashima, M. Tateda. A technique to measure distributed strain in optical fibers. IEEE Photon. Technol. Lett., 2, 352-354(1990).

    [17] X. Bao, L. Chen. Recent progress in Brillouin scattering based fiber sensors. Sensors, 11, 4152-4187(2011).

    [18] M. Niklès, L. Thévenaz, P. A. Robert. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett., 21, 758-760(1996).

    [19] A. Zadok, A. Eyal, M. Tur. Stimulated Brillouin scattering slow light in optical fibers [Invited]. Appl. Opt., 50, E38-E49(2011).

    [20] X. S. Yao. Brillouin selective sideband amplification of microwave photonic signals. IEEE Photon. Technol. Lett., 10, 138-140(1998).

    [21] T. Tanemura, Y. Takushima, K. Kikuchi. Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber. Opt. Lett., 27, 1552-1554(2002).

    [22] A. Zadok, A. Eyal, M. Tur. Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering. J. Lightwave Technol., 25, 2168-2174(2007).

    [23] M. O. Van Deventer, A. J. Boot. Polarization properties of stimulated Brillouin scattering in single-mode fibers. J. Lightwave Technol., 12, 585-590(1994).

    [24] A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Opt. Express, 16, 21692-21707(2008).

    [25] A. Wise, M. Tur, A. Zadok. Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering. Opt. Express, 19, 21945-21955(2011).

    [26] S. Preussler, A. Zadok, A. Wiatrek, M. Tur, T. Schneider. Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling. Opt. Express, 20, 14734-14745(2012).

    [27] Y. Stern, K. Zhong, T. Schneider, Y. Ben-Ezra, R. Zhang, M. Tur, A. Zadok. Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals. Appl. Opt., 52, 6179-6184(2013).

    [28] Y. Stern, K. Zhong, T. Schneider, Y. Ben-Ezra, R. Zhang, M. Tur, A. Zadok. Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering. Proceedings of the IEEE International Topical Meeting on Microwave Photonics, 146-149(2013).

    [29] M. Sagues, A. Loayssa. Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering. Opt. Express, 18, 22906-22914(2010).

    [30] B. Vidal. Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling. Opt. Lett., 37, 5055-5057(2012).

    [31] S. Preussler, N. Wenzel, R. P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, T. Schneider. Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise. Opt. Express, 21, 23950-23962(2013).

    [32] W. Li, L. X. Wang, N. H. Zhu. All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering. IEEE Photon. J., 5, 5501411(2013).

    [33] R. J. Mailloux. Phased Array Antenna Handbook(2005).

    [34] R. W. Tkach, A. R. Chraplyvy, R. M. Derosier. Performance of WDM network based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 1, 111-113(1989).

    [35] M. F. Ferreira, J. F. Rocha, J. L. Pinto. Analysis of the gain and noise characteristics of fibre Brillouin amplifiers. Opt. Quantum Electron., 26, 35-44(1994).

    [36] M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, D. J. Gauthier. Distortion management in slow-light pulse delay. Opt. Express, 13, 9995-10002(2005).

    [37] K.-Y. Song, M. González Herráez, L. Thévenaz. Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers. Opt. Express, 13, 9758-9765(2005).

    [38] T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima. Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb. Opt. Express, 16, 8026-8032(2008).

    [39] X. Zou, W. Li, W. Pan, L. Yan, J. Yao. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering. IEEE Trans. Microwave Theor. Tech., 61, 3470-3478(2013).

    [40] A. Zadok, A. Eyal, M. Tur. Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp. Opt. Express, 14, 8498-8505(2006).

    [41] A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, I. Fazal. Optical signal processing using tunable delay elements based on slow light. IEEE J. Sel. Top. Quantum Electron., 14, 691-705(2008).

    [42] Y. Zhu, M. Lee, M. A. Neifeld, D. J. Gauthier. High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation. Opt. Express, 19, 687-697(2011).

    [43] A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, B. J. Eggleton. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. Opt. Express, 20, 18836-18845(2012).

    [44] L. Yaron, M. Tur. RF nonlinearities in an analog optical link and their effect on radars carrying linear and nonlinear frequency modulated pulses. J. Lightwave Technol., 30, 3475-3483(2012).

    [45] J. H. Schaffner, W. B. Bridges. Intermodulation distortion in high-dynamic range microwave fiber-optic links with linearized modulators. J. Lightwave Technol., 11, 3-6(1993).

    [46] M. Ran, B. I. Lembrikov, Y. Ben-Ezra. Ultra-wideband radio-over-optical fiber concepts, technologies and applications. IEEE Photon. J., 2, 36-48(2010).

    CLP Journals

    [1] Bijuan Chen, Erwin H. W. Chan, Xinhuan Feng, Xudong Wang, Bai-Ou Guan. Investigation on microwave photonic filter group delay performance[J]. Chinese Optics Letters, 2017, 15(8): 080604

    [2] Cheng Feng, Stefan Preussler, Thomas Schneider. Sharp tunable and additional noise-free optical filter based on Brillouin losses[J]. Photonics Research, 2018, 6(2): 132

    [3] Xihua Zou, Peixuan Li, Wei Pan, Lianshan Yan. Photonic microwave filters with ultra-high noise rejection [Invited][J]. Chinese Optics Letters, 2019, 17(3): 030601

    [4] Lu Xu, Jie Hou, Haitao Tang, Yuan Yu, Yu Yu, Xuewen Shu, Xinliang Zhang. Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth[J]. Photonics Research, 2019, 7(2): 110

    [5] Yanbing Jin, Erwin H. W. Chan, Xinhuan Feng, Xudong Wang, Bai-ou Guan. Tunable negative coefficient microwave photonic filter based on a polarization modulator and a polarization beam interferometer[J]. Chinese Optics Letters, 2015, 13(5): 050601

    [6] Wang Wenxuan, Tao Ji, Huang Long. Narrowband Tunable Microwave Photonic Filter Based on Fabry-Perot Laser with Optical Injection[J]. Chinese Journal of Lasers, 2017, 44(10): 1006002

    [7] Hang Yuan, Yulei Wang, Zhiwei Lu, Rui Liu, Can Cui. Measurement of Brillouin gain coefficient in fluorocarbon liquid[J]. Chinese Optics Letters, 2016, 14(4): 041902

    Yonatan Stern, Kun Zhong, Thomas Schneider, Ru Zhang, Yossef Ben-Ezra, Moshe Tur, and Avi Zadok. Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering[J]. Photonics Research, 2014, 2(4): B18
    Download Citation