• Laser & Optoelectronics Progress
  • Vol. 48, Issue 1, 11602 (2011)
Li Hao1、2、*, Geng Yongyou1, and Wu Yiqun1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop48.011602 Cite this Article Set citation alerts
    Li Hao, Geng Yongyou, Wu Yiqun. Progress on Inorganic Laser Thermal Lithography Materials[J]. Laser & Optoelectronics Progress, 2011, 48(1): 11602 Copy Citation Text show less
    References

    [1] P. L. M. Put, H. P. Urbach, R. D. Morton et al.. Resolution limit of optical disc mastering[J]. Jpn. J. Appl. Phys., 1997, 36(1B): 539~548

    [2] H. Kitahara, Y. Kojima, M. Kobayashi et al.. Practical electron beam recorder for high-density optical and magnetic disk mastering[J]. Jpn. J. Appl. Phys., 2006, 45(2B): 1401~1406

    [3] Y. Wada, H. Tanaka, H. Kitahara et al.. Improvement of electron beam recorder for mastering of future storage media[J]. Jpn. J. Appl. Phys., 2008, 47(7): 6007~6012

    [4] M. Shinoda, K. Saito, T. Kondo et al.. High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index[J]. Jpn. J. Appl. Phys., 2003, 42(2B): 1101~1104

    [5] M. Kuwahara, T. Nakano, J. Tominaga et al.. High-speed optical near-field photolithography by super resolution near-field structure[J]. Jpn. J. Appl. Phys., 1999, 38(9AB): L1079~L1081

    [6] M. Kuwahara, T. Nakano, C. Mihalcea et al.. Less than 0.1 μm linewidth fabrication by visible light using super-resolution near-field structure[J]. Microelectronic Eng., 2001, 57~58: 883~890

    [7] M. Kuwahara, J. M. Li, C. Mihalcea et al.. Thermal lithography for 100 nm dimensions using a nano-heat spot of a visible laser beam[J]. Jpn. J. Appl. Phys., 2002, 41(9AB): L1022~L1024

    [8] M. Kuwahara, C. Mihalcea, N. Atoda et al.. Thermal lithography for 0.1 μm pattern fabrication[J]. Microelectronic Eng., 2002, 61~62: 415~421

    [9] M. Kuwahara, C. Mihalcea, N. Atoda et al.. A thermal lithography technique using a minute heat spot of a laser beam for 100 nm dimension fabrication[J]. Optical Nanotechnologies, Topics Appl. Phys., 2003, 88: 79~87

    [10] M. Kuwahara, J. H. Kim, J. Tominaga. Dot formation with 170-nm dimensions using a thermal lithography technique[J]. Microelectronic Eng., 2003, 67~68: 651~656

    [11] T. Shintani, Y. Anzai, H. Minemura et al.. Nanosize fabrication using etching of phase-change recording films[J]. Appl. Phys. Lett., 2004, 85(4): 639~641

    [12] C. T. Yang, M. F. Hsu, S. L. Chang et al.. Spin coatable inorganic resist for high density disk mastering process application[J]. Jpn. J. Appl. Phys., 2008, 47(7): 6023~6024

    [13] C. P. Liu, Y. X. Huang, C. C. Hsu et al.. Nanoscale fabrication using thermal lithography technique with blue laser[J]. IEEE Transactions on Magnetics, 2009, 45(5): 2206~2208

    [14] A. Kouchiyama, K. Aratani, Y. Takemotoi et al.. High-resolution blue-laser mastering using an inorganic photoresist[J]. Jpn. J. Appl. Phys., 2003, 42(2B): 769~771

    [15] M. Kuwahara, J. Kim, D. Yoon et al.. Nanoscale dots fabrication by volume change thermal lithography[J]. Jpn. J. Appl. Phys., 2004, 43(8B): L1045~L1047

    [16] E. Ito, Y. Kawaguchi, M. Tomiyama et al.. TeOx-based film for heat-mode inorganic photoresist mastering[J]. Jpn. J. Appl. Phys., 2005, 44(5B): 3574~3577

    [17] T. Sakai, I. Nakano, M. Shimo et al.. Thermal direct mastering using deep UV laser[J]. Jpn. J. Appl. Phys., 2006, 45(2B): 1407~1409

    [18] H. Miura, N. Toyoshima, Y. Hayashi et al.. Patterning of ZnS-SiO2 by laser irradiation and wet etching[J]. Jpn. J. Appl. Phys., 2006, 45(2B): 1410~1413

    [19] C. P. Liu, C. C. Hsu, T. R. Jeng et al.. Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography[J]. J. Alloys and Compounds, 2009, 488(1): 190~194

    [20] K. Yusu, R. Yamamoto, M. Matsumaru et al.. Transition mechanism of WOx available for optical disc by laser irradiation[J]. Jpn. J. Appl. Phys., 2009, 48(3): 03A068

    [21] S. Hotz. http:∥www.media-tech.net/fileadmin/templates/sc08/pdf/keynotes/t_1430_Hotz.pdf, Singulus Mastering Fascination Blu, 2008, 1~41

    [22] H. Y. Cheng, C. A. Jong, C. M. Lee et al.. Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory[J]. IEEE Trans. Magn., 2005, 41(2): 1031~1033

    [23] H. Y. Cheng, C. A. Jong, R. J. Chung et al.. Wet etching of Ge2Sb2Te5 films and switching properties of resultant phase change memory cells[J]. Semicond. Sci. Technol., 2005, 20(11): 1111~1115

    [24] T. Ohta, M. Takenaga, N. Akahira et al.. Thermal-changes of optical-properties observed in some suboxide thin-films[J]. J. Appl. Phys., 1982, 53(12): 8497~8500

    [25] H. Seki. Effective medium analysis of TeOx optical storage layers[J]. Appl. Phys. Lett., 1983, 43(11): 1000~1002

    [26] Y. S. Tyan, D. R. Preuss, F. Vazan et al.. Laser recording in tellurium suboxide thin-films[J]. J. Appl. Phys., 1986, 59(3): 716~719

    [27] I. Podolesheva, V. Platikanova, I. Konstantinov et al.. Thermally-induced changes in TeOx thin-layers[J]. J. Vac. Sci. Technol. A, 1994, 12(2): 393~398

    [28] W. Y. Lee, F. Sequeda, J. Salem et al.. Reactively sputter-deposited and coevaporated TeOx thin-films for optical-recording[J]. J. Vac. Sci. Technol. A, 1986, 4(3): 553~557

    [29] K. Kimura. Optical-recording materials based on TeOx films[J]. Jpn. J. Appl. Phys., 1989, 28(5): 810~813

    [30] K. Nishiuchi, H. Kitaura, N. Yamada et al.. Dual-layer optical disk with Te-O-Pd phase-change film[J]. Jpn. J. Appl. Phys., 1998, 37(4B): 2163~2167

    [31] H. Miura, N. Iwa, N. Toyoshima et al.. Structure analysis of ZnS-SiO2 thin film and patterning by heat-mode lithography[C]. Conference Proceedings of Optical Data Storage Topical Meeting, 2006. 129~131

    [32] H. Miura, N. Toyoshima, K. Takeuchi et al.. Nanometer-scale patterning of ZnS-SiO2 by heat-mode lithography[J]. Ricoh Technical Report, 2007, 33: 36~43

    [33] T. Mori. New approach to fabrication of minute columnar and ring patterns with ZnS, SiO2, and Zn[J]. Jpn. J. Appl. Phys., 2009, 48(1): 010221

    [34] K. Kurihara, Y. Yamakawa, T. Nakano et al.. High-speed optical nanofabrication by platinum oxide nano-explosion[J]. J. Opt. A: Pure and Appl. Opt., 2006, 8(4): S139~S143

    [35] J. Kim, I. Hwang, D. Yoon et al.. Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers[J]. Appl. Phys. Lett., 2003, 83(9): 1701~1703

    [36] J. Kim, I. Hwang, H. Kim et al.. Signal characteristics of super-resolution near-field structure disk in blue laser system[J]. Jpn. J. Appl. Phys., 2004, 43(7B): 4921~4924

    [37] D. Yoon, J. Kim, H. Kim et al.. Super resolution read only memory disc using super-resolution near-field structure technology[J]. Jpn. J. Appl. Phys., 2004, 43(7B): 4945~4948

    [38] K. Kurihara, Y. Yamakawa, T. Shima et al.. High-speed fabrication of super-resolution near-field structure read-only memory master disc using PtOx thermal decomposition lithography[J]. Jpn. J. Appl. Phys., 2006, 45(2B): 1379~1382

    [39] R. Bussjager, J. Chaiken, M. Getbehead et al.. Using tungsten oxide based thin films for optical memory and the effects of using IR combined with blue/blue-green wavelengths[J]. Jpn. J. Appl. Phys., 2000, 39(2B): 789~796

    [40] T. Aoki, M. Tatsuhiko, A. Suzuki et al.. Write-once optical recording using WO2 films prepared by pulsed laser deposition[J]. Thin Solid Films, 2006, 509(1~2): 107~112

    [41] Y. Aoki, K. Morita, K. Deguchi et al.. A low-noise durable transmissive stamper for multi-layer discs using phase transition mastering[C]. Conference Proceedings of Optical Data Storage Topical Meeting, 2006, 6282: L2821~L2821

    CLP Journals

    [1] Yin Xianhua, Zhang Guowen, Zhou Shenlei, Ma Weixin. Criteria Study of Laser Induced Damage[J]. Laser & Optoelectronics Progress, 2012, 49(1): 11404

    [2] Wan Yuhong, Tao Shiquan. Micro-Holographic Data Storage Technology and Its Research Progress[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100004

    Li Hao, Geng Yongyou, Wu Yiqun. Progress on Inorganic Laser Thermal Lithography Materials[J]. Laser & Optoelectronics Progress, 2011, 48(1): 11602
    Download Citation