• Journal of Semiconductors
  • Vol. 41, Issue 3, 032701 (2020)
M. Benaicha1, L. Dehimi1、2, F. Pezzimenti3, and F. Bouzid4
Author Affiliations
  • 1Laboratory of Metallic and Semiconductor Materials, University of Biskra, Biskra 07000, Algeria
  • 2Faculty of Science, University of Batna, Batna 05000, Algeria
  • 3DIIES - Mediterranea University of Reggio Calabria, Reggio Calabria 89122, Italy
  • 4UDCMA - Research Center in Industrial Technologies, Algiers 16014, Algeria
  • show less
    DOI: 10.1088/1674-4926/41/3/032701 Cite this Article
    M. Benaicha, L. Dehimi, F. Pezzimenti, F. Bouzid. Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. Journal of Semiconductors, 2020, 41(3): 032701 Copy Citation Text show less
    References

    [1] R Asadpour, R V K Chavali, M R Khan et al. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ~ 33%) solar cell. Appl Phys Lett, 106, 243902(2015).

    [2] H Bencherif, L Dehimi, F Pezzimenti et al. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J Electron Mater, 48, 3871(2019).

    [3]

    [4] F Bouzid, L Dehimi, F Pezzimenti et al. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice Microstruct, 122, 57(2018).

    [5] F Bouzid, L Dehimi, F Pezzimenti. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J Electron Mater, 46, 6563(2017).

    [6] M L Megherbi, F Pezzimenti, L Dehimi et al. Analysis of the forward I–V characteristics of Al-implanted 4H-SiC p–i–n diodes with modeling of recombination and trapping effects due to intrinsic and doping-induced defect states. J Electron Mater, 47, 1414(2018).

    [7] A Fritah, L Dehimi, F Pezzimenti et al. Analysis of I–V–T characteristics of Au/n-InP Schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J Electron Mater, 48, 3692(2019).

    [8] M L Megherbi, F Pezzimenti, L Dehimi et al. Analysis of trapping effects on the forward current-voltage characteristics of Al-implanted 4H-SiC p–i–n diodes. IEEE Trans Electron Devices, 65, 3371(2018).

    [9] H Bencherif, L Dehimi, F Pezzimenti et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A, 125, 294(2019).

    [10]

    [11] Y Zheng, A Mihara, A Yamamoto. Analysis of InxGa1–xN/Si p–n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges. Appl Phys Lett, 103, 153509(2013).

    [12] M A Green, K Emery, Y Hishikawa et al. Solar cell efficiency tables (ver. 39). Prog Photovolt: Res Appl, 20, 12(2012).

    [13] J P Connolly, D Mencaraglia, C Renard et al. Designing III–V multijunction solar cells on silicon. Prog Photovolt: Res Appl, 22, 810(2014).

    [14] H Bencherif, L Dehimi, F Pezzimenti et al. Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik, 182, 682(2019).

    [15]

    [16]

    [17] H Liu, Z Ren, Z Liu et al. The realistic energy yield potential of GaAs on Si tandem solar cells: a theoretical case study. Opt Express, 23, 382(2015).

    [18] L Hsu, W Walukiewicz. Modeling of InGaN/Si tandem solar cells. J Appl Phys, 104, 024507(2008).

    [19] M Benaicha, L Dehimi, N Sengouga. Simulation of double junction InGaN/Si tandem solar cell. J Semicond, 38, 044002(2017).

    [20] R Lachaume, R Carioub, J Decobertb et al. Performance analysis of AlxGaAs/epi-Si(Ge) tandem solar cells: a simulation study. Energy Procedia, 84, 41(2015).

    [21] S Essig, S Ward, M A Steiner. Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 77, 464(2015).

    [22] M Baudrit, C Algora. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns. Phys Status Solidi A, 207, 474(2010).

    [23] B Kınacı, Y Özen, T Asar et al. Effect of alloy composition on structural, optical and morphological properties and electrical characteristics of GaxIn1–xP/GaAs structure. J Mater Sci Mater Electron, 24, 3269(2013).

    [24] Y Marouf, L Dehimi, F Bouzid et al. Theoretical design and performance of InxGa1–xN single junction solar cell. Optik, 163, 22(2018).

    [25] F Bouzid, F Pezzimenti, L Dehimi et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn J Appl Phys, 56, 094301(2017).

    [26] K Zeghdar, L L Dehimi, F Pezzimenti et al. Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn J Appl Phys, 58, 014002(2019).

    [27] Y Marouf, L Dehimi, F Pezzimenti. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice Microstruct, 130, 377(2019).

    [28]

    [29] F Bouzid, F Pezzimenti, L Dehimi et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J Electron Materials, 48, 4107(2019).

    [30] A Haas, J Wilcox, J Gray et al. Design of A GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J Photon Energy, 1, 180011(2011).

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37] J F Geisz, M A Steiner, I I Garcia et al. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett, 103, 0411181(2013).

    M. Benaicha, L. Dehimi, F. Pezzimenti, F. Bouzid. Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. Journal of Semiconductors, 2020, 41(3): 032701
    Download Citation