• Laser & Optoelectronics Progress
  • Vol. 57, Issue 9, 091601 (2020)
Caiyan Lu1, Yongping Li1, Yufeng Yuan2、**, and Junxian Liu1、*
Author Affiliations
  • 1College of Physical Science and Technology, Guangxi Normal University, Guilin, Guangxi 541004, China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China
  • show less
    DOI: 10.3788/LOP57.091601 Cite this Article Set citation alerts
    Caiyan Lu, Yongping Li, Yufeng Yuan, Junxian Liu. Ultrasensitive Biochemical Detection by Employing Two-Dimensional Ti3C2Tx MXene Nanosheets[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091601 Copy Citation Text show less
    References

    [1] Tan C L, Cao X H, Wu X J et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 117, 6225-6331(2017).

    [2] Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 9, 9451-9469(2015).

    [3] Novoselov K S. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [4] Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 73, 44-126(2015).

    [5] Weng Q H, Wang X B, Wang X et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications[J]. Chemical Society Reviews, 45, 3989-4012(2016).

    [6] Tan C L, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews, 44, 2713-2731(2015).

    [7] Liu H, Du Y C, Deng Y X et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 44, 2732-2743(2015).

    [8] Naguib M, Mochalin V N, Barsoum M W et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 26, 992-1005(2014).

    [9] Sinha A. Dhanjai, Zhao H M, et al. MXene: an emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 105, 424-435(2018).

    [10] Alhabeb M, Maleski K, Anasori B et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 29, 7633-7644(2017).

    [11] Shahzad A, Rasool K, Miran W et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water[J]. ACS Sustainable Chemistry & Engineering, 5, 11481-11488(2017).

    [12] Li X Q, Wang C Y, Cao Y et al. Scaling of dynamic hysteresis in ferroelectric spin systems[J]. Chem-Asian J, 13, 2742-2757(2018).

    [13] Liu H, Duan C Y, Yang C H et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2[J]. Sensors and Actuators B: Chemical, 218, 60-66(2015).

    [14] Zeng S W, Baillargeat D, Ho H P et al. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications[J]. Chemical Society Reviews, 43, 3426-3452(2014).

    [15] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews, 108, 462-493(2008).

    [16] Wei Y, Su Y D, Liu C L et al. Micro-displacement optical fiber sensor based on surface plasmon resonance[J]. Laser & Optoelectronics Progress, 55, 040606(2018).

    [17] Li J H, Pei L, Wang J S et al. Temperature and magnetic field sensor based on photonic crystal fiber and surface plasmon resonance[J]. Chinese Journal of Lasers, 46, 0210002(2019).

    [18] Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 38, 0328006(2018).

    [19] Zeng S W, Sreekanth K V, Shang J Z et al. Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing[J]. Advanced Materials, 27, 6163-6169(2015).

    [20] Zeng S W, Hu S Y, Xia J et al. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors[J]. Sensors and Actuators B: Chemical, 207, 801-810(2015).

    [21] Yuan Y F, Yu X T, Ouyang Q et al. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: theoretical insight[J]. 2D Materials, 5, 025015(2018).

    [22] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    [23] Gupta B D, Sharma A K. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study[J]. Sensors and Actuators B, 107, 40-46(2005).

    [24] Miranda A, Halim J, Lorke A et al. Rendering Ti3C2Tx(MXene) monolayers visible[J]. Materials Research Letters, 5, 322-328(2017).

    [25] Weber J W. Calado V E, van de Sanden M C M. Optical constants of graphene measured by spectroscopic ellipsometry[J]. Applied Physics Letters, 97, 091904(2010).

    [26] Wu L, Chu H S, Koh W S et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 18, 14395-14400(2010).

    [27] Sreekanth K V. Krishna K H, de Luca A, et al. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials[J]. Scientific Reports, 4, 6340(2014).

    Caiyan Lu, Yongping Li, Yufeng Yuan, Junxian Liu. Ultrasensitive Biochemical Detection by Employing Two-Dimensional Ti3C2Tx MXene Nanosheets[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091601
    Download Citation