• Laser & Optoelectronics Progress
  • Vol. 61, Issue 5, 0514005 (2024)
Juan He, Jie Cao, Wei Qian, Kun Huo, Chunqiao An, and Fengze Dai*
Author Affiliations
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • show less
    DOI: 10.3788/LOP230897 Cite this Article Set citation alerts
    Juan He, Jie Cao, Wei Qian, Kun Huo, Chunqiao An, Fengze Dai. Processing Method of Graphite Surface Submicrostructure Based on Picosecond Laser[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0514005 Copy Citation Text show less
    References

    [1] He Z R, Wang D C, Fan Z Q et al. Fabrication of Fe-Al coatings with micro/nanostructures for antifouling applications[J]. Coatings, 10, 902(2020).

    [2] Li S, Cui Z Q, Zhang W et al. Biocompatibility of micro/nanostructures nitinol surface via nanosecond laser circularly scanning[J]. Materials Letters, 255, 126591(2019).

    [3] Zhang D N, Jiang S, Tao K et al. Fabrication of inverted pyramid structure for high-efficiency silicon solar cells using metal assisted chemical etching method with CuSO4 etchant[J]. Solar Energy Materials and Solar Cells, 230, 111200(2021).

    [4] Tomasini P. Thermodynamic theory of silicon chemical vapor deposition[J]. Chemistry of Materials, 33, 2147-2154(2021).

    [5] Kawamoto H, Higashitarumizu N, Nagamura N et al. Micrometer-scale monolayer SnS growth by physical vapor deposition[J]. Nanoscale, 12, 23274-23281(2020).

    [6] Zarei S, Zahedinejad M, Mohajerzadeh S. Metal-assisted chemical etching for realisation of deep silicon microstructures[J]. Micro & Nano Letters, 14, 1083-1086(2019).

    [7] Wang T, Li C, Ren B et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier[J]. High Power Laser Science and Engineering, 11, e25(2023).

    [8] Feng R Y, Qian J Y, Peng Y J et al. Femtosecond infrared optical vortex lasers based onoptical parametric amplification[J]. High Power Laser Science and Engineering, 10, e29(2022).

    [9] Zhan X H, Li Y, Zhao Y Q et al. Influence of nanoparticles on laser weld microstructure of 2195 Al-Li alloy[J]. Chinese Journal of Lasers, 50, 1202101(2023).

    [10] Liu X D, Chen L, Wang X Z et al. Study on technology of picosecond laser making micro-hole with helical drilling[J]. Laser & Optoelectronics Progress, 59, 0714005(2022).

    [11] Liu J B, Liu H L, Lin N et al. Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing[J]. Materials Chemistry and Physics, 251, 123083(2020).

    [12] Drogowska-Horna K A, Mirza I, Rodriguez A et al. Periodic surface functional group density on graphene via laser-induced substrate patterning at Si/SiO2 interface[J]. Nano Research, 13, 2332-2339(2020).

    [13] Giannuzzi G, Gaudiuso C, Di Mundo R et al. Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses[J]. Applied Surface Science, 494, 1055-1065(2019).

    [14] Surwade S P, Smirnov S N, Vlassiouk I V et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 10, 459-464(2015).

    [15] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [16] Folgueras L C, Alves M A, Rezende M C. Evaluation of a nanostructured microwave absorbent coating applied to a glass fiber/polyphenylene sulfide laminated composite[J]. Materials Research, 17, 197-202(2014).

    [17] Weickert J, Dunbar R B, Hesse H C et al. Nanostructured organic and hybrid solar cells[J]. Advanced Materials, 23, 1810-1828(2011).

    [18] Wu T, Xu W H, Li X L et al. Bioinspired micro/nanostructured polyethylene/poly(ethylene oxide)/graphene films with robust superhydrophobicity and excellent antireflectivity for solar-thermal power generation, thermal management, and afterheat utilization[J]. ACS Nano, 16, 16624-16635(2022).

    [19] Shen X D, Zou B S, Huang C W et al. Femtosecond laser and oscillation induced large-scale periodic micro/nanostructures on copper surfaces[J]. Optics & Laser Technology, 161, 109166(2023).

    [20] Bai X E, Gou X D, Zhang J L et al. A review of smart superwetting surfaces based on shape-memory micro/nanostructures[J]. Small, 19, 2206463(2023).

    [21] Wang Y M, Guan Y C. Progress in preparation of medical functional surfaces by femtosecond laser-induced micro/nanostructures[J]. Chinese Journal of Lasers, 49, 1002601(2022).

    [22] Wang Q H, Wang H X. Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities[J]. Journal of Central South University, 29, 3217-3247(2022).

    [23] Guo L. Nanosecond laser modified graphene oxide gas separation membran[J]. Modern Chemical Research, 41-43(2022).

    [24] Yan Z Q, Sun Z H, Yue K C et al. CoO/ZnO nanoclusters immobilized on N-doped 3D reduced graphene oxide for enhancing lithium storage capacity[J]. Journal of Alloys and Compounds, 836, 155443(2020).

    Juan He, Jie Cao, Wei Qian, Kun Huo, Chunqiao An, Fengze Dai. Processing Method of Graphite Surface Submicrostructure Based on Picosecond Laser[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0514005
    Download Citation