• Photonics Research
  • Vol. 5, Issue 3, 162 (2017)
Hua Lu1、*, Xuetao Gan1, Dong Mao1, and Jianlin Zhao1、2
Author Affiliations
  • 1MOE Key Laboratory of Space Applied Physics and Chemistry, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
  • 2e-mail: jlzhao@nwpu.edu.cn
  • show less
    DOI: 10.1364/PRJ.5.000162 Cite this Article Set citation alerts
    Hua Lu, Xuetao Gan, Dong Mao, Jianlin Zhao. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides[J]. Photonics Research, 2017, 5(3): 162 Copy Citation Text show less
    References

    [1] W. Barnes, A. Dereux, T. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [2] D. Gramotnev, S. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [3] V. Sorger, R. Oulton, R. Ma, X. Zhang. Toward integrated plasmonic circuits. MRS Bull., 37, 728-738(2012).

    [4] P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, G. Borghs. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat. Photonics, 3, 283-286(2009).

    [5] Q. Gan, Y. J. Ding, F. J. Bartoli. ‘Rainbow’ trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett., 102, 056801(2009).

    [6] P. Berini, A. Olivieri, C. Chen. Thin Au surface plasmon waveguide Schottky detectors on p-Si. Nanotechnology, 23, 444011(2012).

    [7] A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, J. Leuthold. High-speed plasmonic phase modulators. Nat. Photonics, 8, 229-233(2014).

    [8] H. Ren, X. Li, Q. Zhang, M. Gu. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).

    [9] B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, Y. Huang. Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide. Appl. Phys. Lett., 102, 061109(2013).

    [10] C. Zhang, C. Min, L. Du, X. Yuan. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett., 108, 201601(2016).

    [11] J. Chen, Z. Li, X. Zhang, J. Xiao, Q. Gong. Submicron bidirectional all-optical plasmonic switches. Sci. Rep., 3, 1451(2013).

    [12] Z. Chen, H. Li, S. Zhan, B. Li, Z. He, H. Xu, M. Zheng. Tunable high quality factor in two multimode plasmonic stubs waveguide. Sci. Rep., 6, 24446(2016).

    [13] J. Dionne, L. Sweatlock, H. Atwater, A. Polman. Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization. Phys. Rev. B, 73, 035407(2006).

    [14] H. Choo, M. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. Schuck, M. Wu, E. Yablonovitch. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics, 6, 838-844(2012).

    [15] M. Hill, M. Marell, E. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. Veldhoven, E. Geluk, F. Karouta, Y. Oei, R. Nötzel, C. Ning, M. Smit. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express, 17, 11107-11112(2009).

    [16] H. Lu, X. Liu, D. Mao, L. Wang, Y. Gong. Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express, 18, 17922-17927(2010).

    [17] P. Neutens, L. Lagae, G. Borghs, P. Dorpe. Plasmon filters and resonators in metal-insulator-metal waveguides. Opt. Express, 20, 3408-3423(2012).

    [18] F. Hu, H. Yi, Z. Zhou. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt. Lett., 36, 1500-1502(2011).

    [19] G. Veronis, S. Fan. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett., 87, 131102(2005).

    [20] C. Min, G. Veronis. Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express, 17, 10757-10766(2009).

    [21] R. McCarron, W. Dickson, A. Krasavin, G. Wurtz, A. Zayats. Dipolar emission in trench metal-insulator-metal waveguides for short-scale plasmonic communications: numerical optimization. J. Opt., 16, 114006(2014).

    [22] A. Geim, K. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [23] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [24] X. Gan, R. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 7, 883-887(2013).

    [25] H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, M. Gu. Graphene-based active slow surface plasmon polaritons. Sci. Rep., 5, 8443(2015).

    [26] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, K. Loh. Broadband graphene polarizer. Nat. Photonics, 5, 411-415(2011).

    [27] V. Apalkov, M. Stockman. Proposed graphene nanospasers. Light Sci. Appl., 3, e191(2014).

    [28] X. Gan, R. Shiue, Y. Gao, K. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. Heinz, D. Englund. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett., 13, 691-696(2013).

    [29] R. Hao, X. Peng, E. Li, Y. Xu, J. Jin, X. Zhang, H. Chen. Improved slow light capacity in graphene-based waveguide. Sci. Rep., 5, 15335(2015).

    [30] B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, J. Xu. Tunable band-stop filters for graphene plasmons based on periodically modulated graphene. Sci. Rep., 6, 26796(2016).

    [31] H. Jussila, H. Yang, N. Granqvist, Z. Sun. Surface plasmon resonance for characterization of large-area atomic-layer graphene film. Optica, 3, 151-158(2016).

    [32] Z. Li, W. Liu, H. Cheng, S. Chen, J. Tian. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces. Opt. Lett., 41, 3142-3145(2016).

    [33] W. Liu, B. Wang, S. Ke, C. Qin, H. Long, K. Wang, P. Lu. Enhanced plasmonic nanofocusing of terahertz waves in tapered graphene multilayers. Opt. Express, 24, 14765-14780(2016).

    [34] H. Lu, X. Gan, B. Jia, D. Mao, J. Zhao. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Opt. Lett., 41, 4743-4746(2016).

    [35] R. Yu, V. Pruneri, F. J. G. de Abajo. Resonant visible light modulation with graphene. ACS Photon., 2, 550-558(2015).

    [36] J. Shin, J. Kim, J. Kim. Graphene-based hybrid plasmonic modulator. J. Opt., 17, 125801(2015).

    [37] R. Yu, V. Pruneri, F. Abajo. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Sci. Rep., 6, 32144(2016).

    [38] P. Johnson, R. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [39] P. Chen, A. Alù. Atomically thin surface cloak using graphene monolayers. ACS Nano, 5, 5855-5863(2011).

    [40] J. Chen, C. Jang, S. Xiao, M. Ishigami, M. Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol., 3, 206-209(2008).

    [41] S. Thongrattanasiri, F. Koppens, F. Abajo. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett., 108, 047401(2012).

    [42] A. Vakil, N. Engheta. Transformation optics using graphene. Science, 332, 1291-1294(2011).

    [43] X. He, H. X. Lu. Graphene-supported tunable extraordinary transmission. Nanotechnology, 25, 325201(2014).

    [44] J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, F. J. G. de Abajo. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano, 6, 431-440(2012).

    [45] Z. Lu, W. Zhao. Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B, 29, 1490-1496(2012).

    [46] J. Gosciniak, D. Tan. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology, 24, 185202(2013).

    [47] J. Gosciniak, D. Tan. Theoretical investigation of graphene-based photonic modulators. Sci. Rep., 3, 01897(2013).

    [48] L. Yang, T. Hu, R. Hao, C. Qiu, C. Xu, H. Yu, Y. Xu, X. Jiang, Y. Li, J. Yang. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide. Opt. Lett., 38, 2512-2515(2013).

    [49] J. Shin, J. Kim. Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Nanotechnology, 26, 365201(2015).

    [50] X. Kong, W. Yan, Z. Li, J. Tian. Optical properties of metal-multi-insulator-metal plasmonic waveguides. Opt. Express, 20, 12133-12146(2012).

    [51] M. S. Kwon. Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide. IEEE Photon. J., 6, 1-9(2014).

    [52] J. Liu, Y. Zhou, L. Li, P. Wang, A. V. Zayats. Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field. Opt. Express, 23, 12524-12532(2015).

    [53] G. Wang, H. Lu, X. Liu. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Opt. Express, 20, 20902-20907(2012).

    [54] H. Lu, X. Liu, D. Mao. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A, 85, 053803(2012).

    [55] J. R. Piper, S. Fan. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics, 1, 347-353(2014).

    [56] Z. Lu, W. Zhao, K. Shi. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photon. J., 4, 735-740(2012).

    CLP Journals

    [1] Tao Chen, Liangling Wang, Lijuan Chen, Jing Wang, Haikun Zhang, Wei Xia. Tunable terahertz wave difference frequency generation in a graphene/AlGaAs surface plasmon waveguide[J]. Photonics Research, 2018, 6(3): 186

    [2] Tian Zhang, Jia Wang, Qi Liu, Jinzan Zhou, Jian Dai, Xu Han, Yue Zhou, Kun Xu. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks[J]. Photonics Research, 2019, 7(3): 368

    [3] Yuquan Zhang, Xiujie Dou, Yanmeng Dai, Xianyou Wang, Changjun Min, Xiaocong Yuan. All-optical manipulation of micrometer-sized metallic particles[J]. Photonics Research, 2018, 6(2): 66

    Hua Lu, Xuetao Gan, Dong Mao, Jianlin Zhao. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides[J]. Photonics Research, 2017, 5(3): 162
    Download Citation