• Chinese Optics Letters
  • Vol. 20, Issue 2, 021602 (2022)
Tianju Zhang1、2, Chaocheng Zhou3、4, Jia Lin3、**, and Jun Wang1、2、5、*
Author Affiliations
  • 1Laboratory of Micro-Nano Optoelectronic Materials and Devices, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
  • 4State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 5CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202220.021602 Cite this Article Set citation alerts
    Tianju Zhang, Chaocheng Zhou, Jia Lin, Jun Wang. Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites[J]. Chinese Optics Letters, 2022, 20(2): 021602 Copy Citation Text show less
    References

    [1] F. Yuan, X. Zheng, A. Johnston, Y.-K. Wang, C. Zhou, Y. Dong, B. Chen, H. Chen, J. Z. Fan, G. Sharma, P. Li, Y. Gao, O. Voznyy, H.-T. Kung, Z.-H. Lu, O. M. Bakr, E. H. Sargent. Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv., 6, eabb0253(2020).

    [2] Y. Liu, J. Cui, K. Du, H. Tian, Z. He, Q. Zhou, Z. Yang, Y. Deng, D. Chen, X. Zuo, Y. Ren, L. Wang, H. Zhu, B. Zhao, D. Di, J. Wang, R. H. Friend, Y. Jin. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics, 13, 760(2019).

    [3] X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, O. Bushuyev, M. Yuan, R. Comin, D. McCamant, S. O. Kelley, E. H. Sargent. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater., 17, 550(2018).

    [4] A. G. Ricciardulli, S. Yang, J. H. Smet, M. Saliba. Emerging perovskite monolayers. Nat. Mater., 20, 1325(2021).

    [5] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, E. H. Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol., 11, 872(2016).

    [6] Y. Wang, L. Song, Y. Chen, W. Huang. Emerging new-generation photodetectors based on low-dimensional halide perovskites. ACS Photonics, 7, 10(2019).

    [7] Z. L. Cao, F. R. Hu, C. F. Zhang, S. N. Zhu, M. Xiao, X. Y. Wang. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Adv. Photon., 2, 054001(2020).

    [8] J. Wu, R. Su, A. Fieramosca, S. Ghosh, J. Zhao, T. C. H. Liew, Q. Xiong. Perovskite polariton parametric oscillator. Adv. Photon., 3, 055003(2021).

    [9] S. Hussain, A. Raza, F. Saeed, A. Perveen, Y. Sikhai, N. Din, E. E. Elemike, Q. Huang, A. Subramanian, Q. Khan, W. Lei. Stable and high performance all-inorganic perovskite light-emitting diodes with anti-solvent treatment. Chin. Opt. Lett., 19, 030005(2021).

    [10] L. Jiang, X. Luo, Z. Luo, D. Zhou, B. Liu, J. Huang, J. Zhang, X. Zhang, P. Xu, G. Li. Interface and bulk controlled perovskite nanocrystal growth for high brightness light-emitting diodes [Invited]. Chin. Opt. Lett., 19, 030001(2021).

    [11] K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, Z. Chen, C. Zhang, Q. H. Xu, J. Lu, M. Chhowalla, G. Eda, K. P. Loh. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater., 17, 908(2018).

    [12] D. B. Straus, C. R. Kagan. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. J. Phys. Chem. Lett., 9, 1434(2018).

    [13] J. C. Blancon, J. Even, C. C. Stoumpos, M. G. Kanatzidis, A. D. Mohite. Semiconductor physics of organic-inorganic 2D halide perovskites. Nat. Nanotechnol., 15, 969(2020).

    [14] J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traore, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, A. D. Mohite. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun., 9, 2254(2018).

    [15] C. M. Mauck, W. A. Tisdale. Excitons in 2D organic–inorganic halide perovskites. Trends Chem., 1, 380(2019).

    [16] T. Palmieri, E. Baldini, A. Steinhoff, A. Akrap, M. Kollar, E. Horvath, L. Forro, F. Jahnke, M. Chergui. Mahan excitons in room-temperature methylammonium lead bromide perovskites. Nat. Commun., 11, 850(2020).

    [17] M. Baranowski, P. Plochocka. Excitons in metal-halide perovskites. Adv. Energy Mater., 10, 1903659(2020).

    [18] D. H. Cao, C. C. Stoumpos, T. Yokoyama, J. L. Logsdon, T.-B. Song, O. K. Farha, M. R. Wasielewski, J. T. Hupp, M. G. Kanatzidis. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1perovskites. ACS Energy Lett., 2, 982(2017).

    [19] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics, 8, 489(2014).

    [20] C. Gao, Y. Jiang, C. Sun, J. Han, T. He, Y. Huang, K. Yao, M. Han, X. Wang, Y. Wang, Y. Gao, Y. Liu, M. Yuan, H. Liang. Multifunctional naphthol sulfonic salt incorporated in lead-free 2D tin halide perovskite for red light-emitting diodes. ACS Photonics, 7, 1915(2020).

    [21] J. T. Lin, C. C. Liao, C. S. Hsu, D. G. Chen, H. M. Chen, M. K. Tsai, P. T. Chou, C. W. Chiu. Harnessing dielectric confinement on tin perovskites to achieve emission quantum yield up to 21%. J. Am. Chem. Soc., 141, 10324(2019).

    [22] Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc., 139, 6693(2017).

    [23] A. Swarnkar, V. K. Ravi, A. Nag. Beyond colloidal cesium lead halide perovskite nanocrystals: analogous metal halides and doping. ACS Energy Lett., 2, 1089(2017).

    [24] Y. J. Heo, H. J. Jang, J.-H. Lee, S. B. Jo, S. Kim, D. H. Ho, S. J. Kwon, K. Kim, I. Jeon, J.-M. Myoung, J. Y. Lee, J.-W. Lee, J. H. Cho. Enhancing performance and stability of tin halide perovskite light emitting diodes via coordination engineering of Lewis acid-base adducts. Adv. Funct. Mater., 2106974(2021).

    [25] Z. Wang, F. Wang, B. Zhao, S. Qu, T. Hayat, A. Alsaedi, L. Sui, K. Yuan, J. Zhang, Z. Wei, Z. Tan. Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy. J. Phys. Chem. Lett., 11, 1120(2020).

    [26] Z. He, Y. Liu, Z. Yang, J. Li, J. Cui, D. Chen, Z. Fang, H. He, Z. Ye, H. Zhu, N. Wang, J. Wang, Y. Jin. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics, 6, 587(2019).

    [27] M. D. Smith, B. A. Connor, H. I. Karunadasa. Tuning the luminescence of layered halide perovskites. Chem. Rev., 119, 3104(2019).

    [28] M. C. Weidman, M. Seitz, S. D. Stranks, W. A. Tisdale. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano, 10, 7830(2016).

    [29] J. Lee, E. S. Koteles, M. O. Vassell. Luminescence linewidths of excitons in GaAs quantum wells below 150 K. Phys. Rev. B, 33, 5512(1986).

    [30] S. Rudin, T. L. Reinecke, B. Segall. Temperature-dependent exciton linewidths in semiconductors. Phys. Rev. B, 42, 11218(1990).

    [31] X. B. Zhang, T. Taliercio, S. Kolliakos, P. Lefebvre. Influence of electron-phonon interaction on the optical properties of III nitride semiconductors. J. Phys. Condens. Mat., 13, 7053(2001).

    [32] M. D. Smith, H. I. Karunadasa. White-light emission from layered halide perovskites. Acc. Chem. Res., 51, 619(2018).

    [33] S. Kahmann, E. K. Tekelenburg, H. Duim, M. E. Kamminga, M. A. Loi. Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden–Popper perovskites. Nat. Commun., 11, 2344(2020).

    [34] E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, F. Deschler. Formation of long-lived color centers for broadband visible light emission in low-dimensional layered perovskites. J. Am. Chem. Soc., 139, 18632(2017).

    [35] B. Traore, L. Pedesseau, L. Assam, X. Che, J. C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, M. G. Kanatzidis, S. Tretiak, A. D. Mohite, J. Even, M. Kepenekian, C. Katan. Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment. ACS Nano, 12, 3321(2018).

    [36] A. Hermann, J. Furthmüller, H. W. Gäggeler, P. Schwerdtfeger. Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B, 82, 155116(2010).

    [37] R. Saran, A. Heuer-Jungemann, A. G. Kanaras, R. J. Curry. Giant band gap renormalization and exciton phonon scattering in perovskite nanocrystals. Adv. Opt. Mater., 5, 1700231(2016).

    [38] A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, L. M. Herz. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Commun., 7, 11755(2016).

    [39] L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, A. Rao. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano, 11, 10834(2017).

    [40] J. Li, J. Hu, J. Ma, X. Wen, D. Li. Identifying self-trapped excitons in 2D perovskites by Raman spectroscopy [Invited]. Chin. Opt. Lett., 19, 103001(2021).

    [41] N. Mondal, A. De, S. Das, S. Paul, A. Samanta. Ultrafast carrier dynamics of metal halide perovskite nanocrystals and perovskite-composites. Nanoscale, 11, 9796(2019).

    [42] Z. Guo, Y. Wan, M. J. Yang, J. Snaider, K. Zhu, L. B. Huang. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science, 356, 59(2017).

    [43] J. Chen, C. Zhang, X. Liu, L. Peng, J. Lin, X. Chen. Review on the study of carrier dynamic process in all-inorganic halide perovskites by photoluminescence measurement. Photon. Res., 9, 151(2020).

    [44] L. M. Herz. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem., 67, 65(2016).

    [45] T. Zhang, J. Wang. Defect-enhanced exciton–exciton annihilation in monolayer transition metal dichalcogenides at high exciton densities. ACS Photonics, 8, 2770(2021).

    [46] J. S. Manser, P. V. Kamat. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics, 8, 737(2014).

    [47] X. Wu, M. T. Trinh, X. Y. Zhu. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. C, 119, 14714(2015).

    [48] X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch, X. Y. Zhu. Trap states in lead iodide perovskites. J. Am. Chem. Soc., 137, 2089(2015).

    [49] Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science, 356, 59(2017).

    [50] X. L. Li, X. Lian, J. H. Pang, B. B. Luo, Y. H. Xiao, M. D. Li, X. C. Huang, J. Z. Zhang. Defect-related broadband emission in two-dimensional lead bromide perovskite microsheets. J. Phys. Chem. Lett., 11, 8157(2020).

    [51] H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, L. Huang. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 7, 1072(2013).

    [52] Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang, J. Wei, L. Zhang, M. Lv, C. Qin, Y. Liu, M. Yuan. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun., 12, 336(2021).

    [53] Z. Guo, X. Wu, T. Zhu, X. Zhu, L. Huang. Electron–phonon scattering in atomically thin 2D perovskites. ACS Nano, 10, 9992(2016).

    [54] J. S. Yao, J. C. Zhang, L. Wang, K. H. Wang, X. C. Ru, J. N. Yang, J. J. Wang, X. Chen, Y. H. Song, Y. C. Yin, Y. F. Lan, Q. Zhang, H. B. Yao. Suppressing Auger recombination in cesium lead bromide perovskite nanocrystal film for bright light-emitting diodes. J. Phys. Chem. Lett., 11, 9371(2020).

    [55] M. J. Trimpl, A. D. Wright, K. Schutt, L. R. V. Buizza, Z. Wang, M. B. Johnston, H. J. Snaith, P. Müller-Buschbaum, L. M. Herz. Charge-carrier trapping and radiative recombination in metal halide perovskite semiconductors. Adv. Funct. Mater., 30, 2004312(2020).

    [56] K. Miyata, T. L. Atallah, X. Y. Zhu. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv., 3, e1701469(2017).

    [57] D. Ghosh, A. J. Neukirch, S. Tretiak. Optoelectronic properties of two-dimensional bromide perovskites: influences of spacer cations. J. Phys. Chem. Lett., 11, 2955(2020).

    [58] A. Mahata, D. Meggiolaro, L. Gregori, F. De Angelis. Suppression of tin oxidation by 3D/2D perovskite interfacing. J. Phys. Chem. C, 125, 10901(2021).

    Data from CrossRef

    [1] Tianju Zhang, Chaocheng Zhou, Jia Lin, Jun Wang. Regulating the Auger Recombination Process in Two-Dimensional Sn-Based Halide Perovskites. ACS Photonics, acsphotonics.1c01994(2022).

    Tianju Zhang, Chaocheng Zhou, Jia Lin, Jun Wang. Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites[J]. Chinese Optics Letters, 2022, 20(2): 021602
    Download Citation