
Effects on the emission discrepancy between two-
dimensional Sn-based and Pb-based perovskites

Tianju Zhang (张天举)1,2, Chaocheng Zhou (周超成)3,4, Jia Lin (林 佳)3**, and Jun Wang (王 俊)1,2,5*

1 Laboratory of Micro-Nano Optoelectronic Materials and Devices, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences,
Shanghai 201800, China
2 Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power,
Shanghai 200090, China
4 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University,
Shanghai 200240, China
5 CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China

*Corresponding author: jwang@siom.ac.cn

**Corresponding author: jlin@shiep.edu.cn
Received October 12, 2021 | Accepted November 10, 2021 | Posted Online December 2, 2021

Two-dimensional (2D) Sn-based perovskites are a kind of non-toxic environment-friendly emission material with low photo-
luminescence quantum yields (PLQYs) and enhanced emission linewidths compared to that of 2D Pb-based perovskites.
However, there is no work systematically elucidating the reasons for the differences in the emission properties. We fab-
ricate �BA�2SnI4 and �BA�2PbI4 having different defect densities and different exciton-phonon scattering intensities. We
also reveal that 2D Sn-based perovskites have stronger exciton-phonon scattering intensity and higher defects density,
significantly broadening the emission linewidth and accelerating the exciton relaxation process, which significantly reduces
the PLQY of 2D Sn-based perovskites.
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1. Introduction

Self-assembled two-dimensional (2D) Ruddlesden–Popper
phase organic–inorganic halide perovskites with quantum-well
structures have attracted much research attention in optoelec-
tronic devices, lasers, and light-emitting diodes (LEDs) by virtue
of their superior features such as enhanced stability, high
absorption coefficient, tunable light-emitting wavelength, high
color purity, and high exciton binding energy[1–10]. Its chemical
structure formula is �RNH3�2�A�n−1BnC3n�1, where R is an
alkylor aromatic group, A is an organic cation, B is Pb2�,
Sn2�, Ge2�, or other elements, and C is a halogen element[11].
For the 2D perovskites system with n = 1, the organic cation
layer’s dielectric constant is smaller than that of the inorganic
octahedral layer in combination with the inorganic layer’s thick-
ness of about 0.7 nm[12–14], which causes the weakened dielectric
screening effect and the enhanced spatial confinement effect.
These effects greatly weaken the dielectric screening between
electron-hole pairs to enhance the Coulomb interaction force

between them within the inorganic layer, and thus the exciton
dominates the optical transitions in materials[12,15–17].
Although 2D Pb-based perovskites are favored in the field of
LEDs for display applications and lasers, the element Pb2� is
extremely toxic to the environment, limiting its further develop-
ment. Compared to Pb2�, Sn2� is non-toxic and has the most
similar ionic radius[18], so the lattice parameters obtained by
Sn2� replacement are, in principle, not severely modified[19,20],
which makes Sn-based perovskites expected to replace Pb-based
perovskites in the future. At the same time, compared with the
2D Pb-based perovskites LEDs for display applications, the 2D
Sn-based perovskites LEDs suffer from the disadvantages
of low photoluminescence quantum yields (PLQYs) and
enhanced emission linewidths [full width at half-maximum
�FWHM� > 40 nm][21,22]. Although much research points out
that Sn-based perovskites are more likely to have a higher
density of defect states, due to the oxidation potential of
Sn2�=Sn4� �−0.15 eV� being much lower than that of
Pb2�=Pb4� �−1.8 eV�[23], and numerous optimization strategies
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proposed to improve their PLQY[20-22,24–26], it is still difficult to
improve their emission linewidths comparable to that of Pb-
based perovskites (FWHM < 20 nm)[3,5,20,27,28]. There are a
variety of factors affecting the emission linewidth of thematerial,
mainly the inhomogeneous broadening caused by the disor-
dered nature of the crystal structure and exciton-defect scatter-
ing effect, as well as the homogeneous broadening caused by the
electron-phonon scattering effect[29–31]. However, no research
work exists so far to systematically study these effects affecting
emission properties between 2D Pb-based perovskites and 2D
Sn-based perovskites under the same experimental conditions
and further reveal the differences between them.
In this work, we have fabricated �A�2SnI4 and �A�2PbI4 [A: n-

butylammonium �CH3�CH2�3NH�
3 �BA���] using the same

method, which has different defect densities and different exci-
ton-phonon scattering intensities. Taking advantage of the tem-
perature-dependent photoluminescence (PL) spectra, transient
absorption (TA) spectra, time-dependent PL relaxation kinetics,
and PLQY experiments, we also revealed that 2D Sn-based per-
ovskites have stronger exciton-phonon scattering intensity and
higher defect-state density relative to 2D Pb-based perovskites,
which lead to a significant broadening of the emission linewidth
and accelerate the exciton relaxation process of 2D Sn-based
perovskites, and these effects reduce the PLQY of 2D Sn-based
perovskites. These results can guide further improvement in the
emission performance of 2D Sn-based perovskites, in which we
should select new structures for organic cation layers with rel-
atively high rigidity to reduce the exciton-phonon scattering
intensity and use antioxidants to reduce the defect-state density
and thus the energy non-radiative loss.

2. Results and Discussion

To explain the physical mechanism affecting the optical proper-
ties of 2D Sn-based perovskites, we prepared �BA�2SnI4 and
�BA�2PbI4 films by the spin-coating method. The schematic
of the hybrid quantum-well structure of �BA�2SnI4 and
�BA�2PbI4 crystal structures [Fig. 1(a)] shows the perovskite
octahedra sandwiched between organic spacer molecules
(BA�). Figure 1 shows the ultraviolet-visible (UV-Vis) absorp-
tion, steady-state PL spectroscopy, and PLQY of �BA�2SnI4 and
�BA�2PbI4. The inset shows that the optical bandgap of
�BA�2SnI4 and �BA�2PbI4 was obtained as 1.97 eV and
2.37 eV by the Tauc-plot method, respectively. The PLQY of
�BA�2SnI4 is lower than that of �BA�2PbI4, indicating that the
defect density of �BA�2SnI4 is higher than that of �BA�2PbI4.
Such defect states might arise from undesirable and uncon-
trolled conversion of Sn2� to Sn4�, as the oxidation potential
of Sn2�=Sn4� �−0.15 eV�, during the process of sample prepa-
ration in a glove box with almost the nitrogen environment,
in which there is still a trace amount of oxygen that allows
the Sn2� to oxidize to Sn4�[22,23]. Besides, the oxidation poten-
tial of Pb2�=Pb4� is 1.8 eV, which is more negative than that of
Sn2�=Sn4�, making Pb2� a stable state in �BA�2PbI4. In addi-
tion, the FWHM of the normalized PL peak of �BA�2PbI4 is

18.5 nm smaller than that of �BA�2SnI4 (39.2 nm), as shown
in Fig. 2. For 2D hybrid organic−inorganic perovskites, there
is a trapping-state PL phenomenon due to its lattice being rel-
atively soft. For the existence of two types of trap states, one is
the intrinsic self-trapped exciton (STE) state caused by the exci-
ton-phonon coupling, and the other trap state is the extrinsic
STE state; the STE state is influenced by the local heterogeneity
of the permanent defects lattice, which will sink to a different
trapping depth[32–34]. These trap states can make the PL peaks
deviate from the Gaussian line shape with PL tails in the broad
spectral range at the low energy edge. To better fit the PL spectral

Fig. 1. Spectral characteristics of (BA)2BI4 (B: Sn/Pb) perovskites.
(a) Schematic of the hybrid quantum-well structure of the crystal structure,
showing the perovskite octahedra sandwiched between organic spacer mol-
ecules (BA+). The UV-visible (UV-Vis) absorption, steady-state photolumines-
cence (PL) spectra of (b) (BA)2SnI4 and (c) (BA)2PbI4. (d) PLQY of (BA)2SnI4 and
(BA)2PbI4.

Fig. 2. Analysis of PL characteristics. (a) Multi-peak fit analysis of (BA)2PbI4,
(b) multi-peak fit analysis of (BA)2SnI4, (c) percentage of subpeaks of (BA)2PbI4
and (BA)2SnI4, (d) normalized PL decay kinetics.
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line shapes of both materials, we used three subpeak fits, where
the A peak is the PL of the free exciton, and peaks B and C are the
PL of the trap states [Figs. 2(a) and 2(b)]. We found that the per-
centage of trapping-state PL for �BA�2SnI4 is larger than that of
trapping-state PL for �BA�2PbI4, as shown in Fig. 2(c). At the
same time, we have tested the time-resolved PL (TRPL) decay
kinetics of the PL peak and further performed fitting using two
decay exponents [Fig. 2(d)]. We found that the PL lifetime of
�BA�2PbI4 is longer than that of �BA�2SnI4, thus further evi-
dencing that the PLQY of �BA�2PbI4 is higher than that of
�BA�2SnI4. In summary, we proved that �BA�2SnI4 has a higher
defect density relative to �BA�2PbI4. For the �BA�2PbI4, the
valence band maximum (VBM) consists of an antibonding
hybridization between I− (5p states) and Pb2� (6s states), and
the conduction band minimum (CBM) comprises a bonding
hybridization between Pb2� (6p states)[23,35]. For the �BA�2SnI4,
the VBM consists of an antibonding hybridization between I−

(5p states) and Sn2� (5s states), and the CBM comprises a bond-
ing hybridization between Sn2� (5p states)[23]. The spin-orbit
coupling of the Sn2� 5p state is lower than that of the Pb2�

6p state[36], so this lowering of spin-orbit coupling increases
the probability of defect states in �BA�2SnI4. In order to further
analyze the factors affecting the FWHM, we conducted the tem-
perature-dependent PL spectra to analyze the different physical
processes of scattering (Fig. 3).
The variation of PL FWHM with temperature involves dif-

ferent physical processes of scattering, and the analysis of
temperature-dependent PL FWHM is the main means to
evaluate the electron-phonon coupling mechanism in various
semiconductors[29,30]. Using first-order perturbation theory,
the temperature-dependent FWHM can be approximately sim-
plified to a model that contains four scattering mechanisms, as

shown in Eq. (1)[37,38]. In the fitting process, the model utilizes a
single phonon energy fit, which neglects the feature of the varia-
tion of phonon energy with temperature. Therefore, the fitting
results have a certain limitation. However, it is helpful as a guide
to understand the scattering between excitons and phonons in
perovskite materials:

Γ�T� = Γ0 � γacT � ΓLO

eELO=kBT − 1
� Γimpe

−Eimp=kBT , (1)

where the first term Γ0 on the right-hand side of Eq. (1) is the
temperature-independent inhomogeneous broadening, which
originates from the disordered nature of the crystal struc-
ture[29,30]. The second and third terms are temperature-
dependent homogeneous broadening due to exciton-acoustic
phonon scattering interactions and exciton-longitudinal optical
(LO) phonon scattering interactions, where γac is the coupling
strength of the exciton-acoustic phonon scattering, ΓLO is the
Fröhlich coupling strength of the exciton scattering with LO
phonons, and ELO is the energy of the LO phonon. The last term
describes the inhomogeneous broadening caused by ionized
impurities (coupling Γimp), where the impurities with the bind-
ing energy, Eimp, are completely ionized. Since the FWHM gra-
dient of increase is close to zero for both samples at low
temperatures[38], the exciton-acoustic phonon scattering effect
can be excluded because its contribution can cause a linear
growth characteristic of the FWHM at low temperatures, so
γac is equal to zero. This judgment is consistent with the results
of polar inorganic semiconductors, i.e., acoustic phonon scatter-
ing is relatively negligible compared with the optical phonon
scattering at room temperature[37–40]. The fitting parameters
obtained by using the global fit optimization algorithm based
on simulated annealing are shown in Table 1. We can obtain
from the fitting results that for �BA�2PbI4, the optical phonon
energy ELO is 20.85 ± 1meV, and the exciton-optical phonon
scattering intensity ΓLO is 14.5 ± 2meV, which is in agreement
with the results reported in the literature to indicate the ration-
ality of the fitting results[38,39]. We found that the Γ0 of
�BA�2SnI4 is almost twice as large as that of �BA�2PbI4, demon-
strating that the crystal structure of �BA�2SnI4 is more disor-
dered. Second, the exciton-optical phonon scattering intensity
of �BA�2SnI4 is much larger than that of �BA�2PbI4, which
greatly enlarges the PL FWHM of �BA�2SnI4. Therefore, com-
pared to 2D Pb-based perovskites, 2D Sn-based perovskites have
higher crystal structure disorder and stronger exciton-optical
phonon scattering intensities.

Fig. 3. Temperature dependence of the steady-state PL spectra. Contour
map of the temperature-dependent steady-state PL spectra of
(a) (BA)2SnI4 and (b) (BA)2PbI4. Fitting of the temperature-dependent
FWHM of (c) (BA)2SnI4 and (d) (BA)2PbI4. The red fitting line of the data (blue
point) is obtained by Eq. (1).

Table 1. Best-Fitting Parameters of the (BA)2SnI4 and (BA)2PbI4 Perovskites.

Sample Γ0 (meV) ΓLO (meV) ELO (meV) Eimp (meV)

�BA�2SnI4 63.1 ± 2 192.8 ± 4 56.5 ± 2 94.9 ± 2

�BA�2PbI4 37.7 ± 1 14.5 ± 2 20.85 ± 1 188.3 ± 2
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Femtosecond TA spectroscopy was utilized to further inves-
tigate the photophysical processes of the nonequilibrium inter-
actions of photogenerated carriers[41–43]. The recombination
characteristics of the photogenerated carriers in amaterial deter-
mine the emission properties of the material[44]. TA spectros-
copy measurements of polycrystalline thin films prepared on
quartz substrates were performed using our custom-built TA
spectroscopy setup[45]. The light pulse generated by the
Spectra-Physics Spirit laser (350 fs, 1 kHz, 40 μJ/pulse) is split
into two parts by an ultrafast beam splitter with a reflection
to transmission energy ratio of 1:4. A frequency-doubled
520 nm output from the transmitted light was used as the pump
beam, whereas the reflected laser pulse was used to excite a sap-
phire crystal for generating a white light continuous spectrum,
whose chirp effect is corrected. The pump beam was chopped at
500 Hz, and the probe beam transmitting the sample is collected
by an ultrafast fiber optic spectrometer after passing through a
short pass filter with a cutoff wavelength of 950 nm. The time
window of the TA measurement was 1.6 ns. The spot radii of
the pump light and probe light are determined to be 320 ± 0.5
and 10 ± 0.5 μm, respectively, by the knife-cut method, and
the pump light and probe light overlap at the same point of
the sample in a noncollinear manner.
Figure 4 shows the false-color 2D TA mappings of the

�BA�2SnI4 and �BA�2PbI4 thin films. For the TA spectra of
�BA�2SnI4, there are photoinduced ground-state bleaching
signals approximately at 610 nm and 518 nm, which are caused
by the band filling effect induced by pump light[46].Within the first
picosecond (ps), the interaction of hot excitons leads to the
bandgap renormalization process, which in turn results in the sig-
nal of photoinduced absorption[47,48]. The photoinduced bleach-
ing signals also exist in the broad spectral range (650–750 nm)
below the bandgap, mainly caused by the filling of defect states
with carriers excited by pump light. For the TA spectra of
�BA�2PbI4, there is a photoinduced bleaching signal at about
518 nm caused by the band filling effect, while there is still a photo-
induced bleaching signal in the wide range below the bandgap.
The relaxation process of photogenerated carriers at low exci-

tation fluence of 3 μJ=cm2 is analyzed by global fitting based on
three relaxation decay components with different lifetimes[49].
The multi-exponential fitting of the photogenerated excitons
is described in our previous work[45]. Among them, the first
ultrafast relaxation component has a lifetime of about the order
of a hundred femtoseconds. In the recent study of TA kinetics,
the first fast component was attributed to the surface defect trap-
ping process (< 1 ps) in 2D �CH3�CH2�8NH3�2PbBr4 perov-
skite[50], and the surface trap state captured the exciton
process (600 fs) for monolayer MoS2 materials[51]. So, the proc-
ess is assigned to a defect trapping excitons process and a
bandgap renormalization process. The second relaxation com-
ponent with a lifetime of about the order of a hundred picosec-
onds is attributed to an interband exciton recombination
process. The recombination rate of this process is affected by
the excitation fluence, exciton-defect scattering effect, and exci-
ton-phonon scattering effect[45,52,53]. The third process with the
lifetime of a few nanoseconds is attributed to a defect-state-

assisted recombination process[54,55]. The band-side exciton
radiative relaxation recombination rate of �BA�2SnI4 is faster
compared with that of �BA�2PbI4. This is mainly due to the
stronger exciton-phonon scattering intensity and exciton-defect
scattering intensity, which both accelerate the exciton recombi-
nation rate and reduce the percentage of exciton radiative
recombination processes[53,56,57]. Tretiak et al. revealed that
the more flexible geometry results in faster electron-hole recom-
bination and shorter carrier lifetime, diminishing the PLQY for
softer 2D perovskites by the density generalized function theory
calculations[57]. Therefore, the soft organic cations [e.g., alkyl–
ammonium chain (BA+)] can be replaced by relatively rigid
structural organic cations [e.g., phenyl-ethylammonium
(C6H5CH2CH2NH

�
3 �PEA��) cation containing benzene rings]

to limit their thermal movement between the inorganic octahe-
dron layers and further reduce the exciton-phonon scattering
intensity. At the same time, PEA� has a greater ability to hinder
the formation of tin oxidation, where BA� ions increased the
defect formation energy of Sn4� by 0.33 eV, while PEA� could
increase the defect formation energy of Sn4� by 0.6 eV[58].
Therefore, there is a necessity to find organic cation layers with
the appropriate structure to further improve the emission char-
acteristics of 2D Sn-based perovskites.

Fig. 4. Carrier relaxation dynamics. False-color 2D TA mappings of
(a) (BA)2SnI4 and (b) (BA)2PbI4. Evolution-associated spectra (EAS) obtained
upon global analysis of the TA data of (c) (BA)2SnI4 and (d) (BA)2PbI4.
Decay-associated spectra (DAS) obtained by performing global analysis on
the TA spectra of (e) (BA)2SnI4 and (f) (BA)2PbI4. The inset shows the results
of fitting the band-edge exciton relaxation dynamics.
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3. Conclusion

In summary, we have fabricated samples �A�2SnI4 and �A�2PbI4
[A: n-butylammonium �CH3�CH2�3NH�

3 �BA���] using the
same method and have revealed that 2D Sn-based perovskites
have stronger exciton-phonon scattering intensity and higher
defect density of states relative to 2D Pb-based perovskites by
the temperature-dependent PL spectra, TA spectra, time-depen-
dent PL relaxation kinetics, and PLQY experiments. These fac-
tors lead to a significant broadening of the emission linewidth
and accelerate the exciton relaxation process, which reduces
the PLQY of 2D Sn-based perovskites. Our results can be a guide
for further improving the emission performance of 2D Sn-based
perovskites by selecting new structures of organic cation layers
with relatively high rigidity to reduce the exciton-phonon scat-
tering intensity and by using antioxidants to reduce the defect-
state density in thematerial and thus the energy loss of non-radi-
ative transitions.

4. Experimental Section

4.1. Syntheses of the (BA)2SnI4 and (BA)2PbI4 perovskites
polycrystalline thin films

The glass substrate was cleaned sequentially with detergent,
deionized water, ethanol, and isopropanol. Then, the substrate
was treated with oxygen plasma for 10min and dried in an argon
flow. For the synthesis of �BA�2SnI4 perovskite film, 0.1 mmol
SnI2 and 0.2 mmol BAI were dissolved in 1 mL dimethyl forma-
midine (DMF) : dimethyl sulfoxide (DMSO) (v : v = 4 : 1) to
form the perovskite precursor solution, which was heated and
stirred at 70°C for a few hours before use. Subsequently, the
above-mentioned precursor solution was deposited on top of
the glass substrate via a spin-coating process at 2500 r/min
for 60 s in the argon-filled atmosphere. Then, the perovskite film
was obtained after thermal annealing at 70°C for 5 min. The fab-
rication procedure of �BA�2PbI4 perovskite thin films is identi-
cal to that of �BA�2SnI4.

4.2. Temperature-dependent PL measurement

For temperature-dependent PL measurement, polycrystalline
thin films prepared on silica substrates were mounted in a cryo-
stat (Janis ST-100) and cooled by liquid nitrogen. The samples
were excited by the continuous wave (CW) laser excitation at a
wavelength of 473 nm, power density of 2 μJ/cm2, and 25 K
intervals. Fluorescence is separated by the 150 g/mm grating
in the Monochromator SP2500 of Princeton Instruments.
Then, the spectral information was collected by the PIXIS-
100BX CCD at −75°C.

4.3. Photoluminescence quantum yield

PLQY of polycrystalline thin films prepared on silica substrates
was measured using the Edinburgh FLS1000 instrument with an
excitation wavelength of 520 nm.

4.4. UV/visible absorption

UV-Vis absorption spectra of polycrystalline thin films prepared
on glass substrates were collected by a Lambda 950 UV-Vis
spectrometer.

4.5. Time-resolved PL

The TRPL kinetics was detected by a HORIBA DeltaFlex ultra-
fast time-resolved fluorescence spectrometer, where the excita-
tion wavelength is 405 nm at 1 μJ=cm2.
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