• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617002 (2022)
Shaowei Wang1、2 and Ming Lei1、2、*
Author Affiliations
  • 1Key Laboratory of Nonequilibrium Synthesis and Modulation of Condensed Matter, Ministry of Education, School of Physics, Xi’an Jiaotong University, Xi’an , Shaanxi 710049, China
  • 2Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an , Shaanxi 710049, China
  • show less
    DOI: 10.3788/LOP202259.0617002 Cite this Article Set citation alerts
    Shaowei Wang, Ming Lei. Near Infrared-Ⅱ Excited Multiphoton Fluorescence Imaging[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617002 Copy Citation Text show less
    References

    [1] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [2] Nwaneshiudu A, Kuschal C, Sakamoto F H et al. Introduction to confocal microscopy[J]. The Journal of Investigative Dermatology, 132, e3(2012).

    [3] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [4] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).

    [5] Hoover E E, Squier J A. Advances in multiphoton microscopy technology[J]. Nature Photonics, 7, 93-101(2013).

    [6] Kerr J N D, Denk W. Imaging in vivo: watching the brain in action[J]. Nature Reviews Neuroscience, 9, 195-205(2008).

    [7] Shih A Y, Driscoll J D, Drew P J et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain[J]. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 32, 1277-1309(2012).

    [8] Wang S W, Xi W, Cai F H et al. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging[J]. Theranostics, 5, 251-266(2015).

    [9] del Bonis-O’Donnell J T, Chio L, Dorlhiac G F et al. Advances in nanomaterials for brain microscopy[J]. Nano Research, 11, 5144-5172(2018).

    [10] Lecoq J, Orlova N, Grewe B F. Wide. fast. deep: recent advances in multiphoton microscopy of in vivo neuronal activity[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 39, 9042-9052(2019).

    [11] Göppert-Mayer M. Über elementarakte mit zwei quantensprüngen[J]. Annalen Der Physik, 401, 273-294(1931).

    [12] He G S, Tan L S, Zheng Q D et al. Multiphoton absorbing materials: molecular designs, characterizations, and applications[J]. Chemical Reviews, 108, 1245-1330(2008).

    [13] Vogel A, Noack J, Hüttman G et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Applied Physics B, 81, 1015-1047(2005).

    [14] Sibbett W, Lagatsky A A, Brown C T A. The development and application of femtosecond laser systems[J]. Optics Express, 20, 6989-7001(2012).

    [15] Lefort C. A review of biomedical multiphoton microscopy and its laser sources[J]. Journal of Physics D: Applied Physics, 50, 423001(2017).

    [16] Young M D, Field J J, Sheetz K E et al. A pragmatic guide to multiphoton microscope design[J]. Advances in Optics and Photonics, 7, 276-378(2015).

    [17] Halbhuber K J, König K. Modern laser scanning microscopy in biology, biotechnology and medicine[J]. Annals of Anatomy-Anatomischer Anzeiger, 185, 1-20(2003).

    [18] Denk W, Piston D W, Webb W W. Multi-photon molecular excitation in laser-scanning microscopy[M]. Pawley J B. Handbook of biological confocal microscopy, 535-549(2006).

    [19] Montagu J. Scanners: galvanometric and resonant[M]. Encyclopedia of optical and photonic engineering, 1-22(2015).

    [20] Wang K, Wen W H, Liu H J et al. Transmittance characterization of objective lenses covering all four near infrared optical windows and its application to three-photon microscopy excited at 1820 nm[J]. IEEE Photonics Journal, 10, 3900607(2018).

    [21] Kim K H, Buehler C, Bahlmann K et al. Multifocal multiphoton microscopy based on multianode photomultiplier tubes[J]. Optics Express, 15, 11658-11678(2007).

    [22] Modi M N, Daie K, Turner G C et al. Two-photon imaging with silicon photomultipliers[J]. Optics Express, 27, 35830-35841(2019).

    [23] Giacomelli M G. Evaluation of silicon photomultipliers for multiphoton and laser scanning microscopy[J]. Journal of Biomedical Optics, 24, 106503(2019).

    [24] Fang J N, Wang Y Q, Yan M et al. Highly sensitive detection of infrared photons by nondegenerate two-photon absorption under midinfrared pumping[J]. Physical Review Applied, 14, 064035(2020).

    [25] Bruschini C, Homulle H, Antolovic I M et al. Single-photon avalanche diode imagers in biophotonics: review and outlook[J]. Light: Science & Applications, 8, 87(2019).

    [26] Ching-Roa V D, Olson E M, Ibrahim S F et al. Ultrahigh-speed point scanning two-photon microscopy using high dynamic range silicon photomultipliers[J]. Scientific Reports, 11, 5248(2021).

    [27] Yang W J, Yuste R. In vivo imaging of neural activity[J]. Nature Methods, 14, 349-359(2017).

    [28] Hong G S, Antaris A L, Dai H J. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 1, 10(2017).

    [29] Xu C, Wise F W. Recent advances in fibre lasers for nonlinear microscopy[J]. Nature Photonics, 7, 875-882(2013).

    [30] Matras G, Huot N, Baubeau E et al. 10 kHz water-cooled Ti: sapphire femtosecond laser[J]. Optics Express, 15, 7528-7536(2007).

    [31] Miller D R, Jarrett J W, Hassan A M et al. Deep tissue imaging with multiphoton fluorescence microscopy[J]. Current Opinion in Biomedical Engineering, 4, 32-39(2017).

    [32] Mojzisova H, Vermot J. When multiphoton microscopy sees near infrared[J]. Current Opinion in Genetics & Development, 21, 549-557(2011).

    [33] Cerullo G, de Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments, 74, 1-18(2003).

    [34] Tang S, Liu J, Krasieva T B et al. Developing compact multiphoton systems using femtosecond fiber lasers[J]. Journal of Biomedical Optics, 14, 030508(2009).

    [35] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [36] Hu M L, Wang J, Fan J T. Research progress on fiber laser-pumped femtosecond optical parametric oscillators[J]. Chinese Journal of Lasers, 1901001(2021).

    [37] Tang S, Jung W, McCormick D T et al. Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning[J]. Journal of Biomedical Optics, 14, 034005(2009).

    [38] Liu G J, Kieu K, Wise F W et al. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe[J]. Journal of Biophotonics, 4, 34-39(2011).

    [39] Kieu K, Mehravar S, Gowda R et al. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber[J]. Biomedical Optics Express, 4, 2187-2195(2013).

    [40] Liu W, Li C, Zhang Z G et al. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach[J]. Optics Express, 24, 15328-15340(2016).

    [41] Li B, Wang M R, Charan K et al. Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber[J]. Optics Express, 26, 19637-19647(2018).

    [42] Wang K, Qiu P. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy[J]. Journal of Biomedical Optics, 20, 055003(2015).

    [43] Delahaye H, Hage C H, Bardet S M et al. Generation of megawatt soliton at 1680 nm in very large mode area antiresonant fiber and application to three-photon microscopy[J]. Journal of Optics, 23, 115504(2021).

    [44] Li C, Shi J W, Gong X J et al. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging[J]. Optics Letters, 43, 5849-5852(2018).

    [45] Firstov S V, Alyshev S V, Riumkin K E et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 40, 4360-4363(2015).

    [46] Pawlicki M, Collins H A, Denning R G et al. Two-photon absorption and the design of two-photon dyes[J]. Angewandte Chemie, 48, 3244-3266(2009).

    [47] Kim H M, Cho B R. Small-molecule two-photon probes for bioimaging applications[J]. Chemical Reviews, 115, 5014-5055(2015).

    [48] Wang S W, Liu J, Feng G X et al. NIR-II excitable conjugated polymer dots with bright NIR-I emission for deep in vivo two-photon brain imaging through intact skull[J]. Advanced Functional Materials, 29, 1808365(2019).

    [49] Alivisatos A P, Andrews A M, Boyden E S et al. Nanotools for neuroscience and brain activity mapping[J]. ACS Nano, 7, 1850-1866(2013).

    [50] Otte A, Halsband U. Brain imaging tools in neurosciences[J]. Journal of Physiology-Paris, 99, 281-292(2006).

    [51] Kobat D, Horton N G, Xu C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex[J]. Journal of Biomedical Optics, 16, 106014(2011).

    [52] Horton N G, Wang K, Kobat D et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 7, 205-209(2013).

    [53] Miller D R, Hassan A M, Jarrett J W et al. In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure[J]. Biomedical Optics Express, 8, 3470-3481(2017).

    [54] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 5, 763-775(2008).

    [55] Liu H J, Deng X Q, Tong S et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots[J]. Nano Letters, 19, 5260-5265(2019).

    [56] Hassan A M, Wu X, Jarrett J W et al. Polymer dots enable deep in vivo multiphoton fluorescence imaging of microvasculature[J]. Biomedical Optics Express, 10, 584-599(2019).

    [57] Qian J, Zhu Z F, Qin A J et al. High-order non-linear optical effects in organic luminogens with aggregation-induced emission[J]. Advanced Materials, 27, 2332-2339(2015).

    [58] Wang Y L, Hu R R, Xi W et al. Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging[J]. Biomedical Optics Express, 6, 3783-3794(2015).

    [59] Wang Y, Han X, Xi W et al. Bright AIE nanoparticles with F127 encapsulation for deep-tissue three-photon intravital brain angiography[J]. Advanced Healthcare Materials, 6, 1700685(2017).

    [60] Samanta S, Huang M N, Li S Q et al. AIE-active two-photon fluorescent nanoprobe with NIR-II light excitability for highly efficient deep brain vasculature imaging[J]. Theranostics, 11, 2137-2148(2021).

    [61] Lou X D, Zhao Z J, Tang B Z. Organic dots based on AIEgens for two-photon fluorescence bioimaging[J]. Small, 12, 6430-6450(2016).

    [62] Liu M X, Gu B B, Wu W B et al. Binary organic nanoparticles with bright aggregation-induced emission for three-photon brain vascular imaging[J]. Chemistry of Materials, 32, 6437-6443(2020).

    [63] Hontani Y, Xia F, Xu C. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain[J]. Science Advances, 7, eabf3531(2021).

    [64] Wang T Y, Xu C. Three-photon neuronal imaging in deep mouse brain[J]. Optica, 7, 947-960(2020).

    [65] Ouzounov D G, Wang T Y, Wang M R et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain[J]. Nature Methods, 14, 388-390(2017).

    [66] Yildirim M, Sugihara H, So P T C et al. Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy[J]. Nature Communications, 10, 177(2019).

    [67] Chow D M, Sinefeld D, Kolkman K E et al. Deep three-photon imaging of the brain in intact adult zebrafish[J]. Nature Methods, 17, 605-608(2020).

    [68] Tischbirek C, Birkner A, Jia H B et al. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 11377-11382(2015).

    [69] Weisenburger S, Tejera F, Demas J et al. Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy[J]. Cell, 177, 1050-1066(2019).

    [70] Ji N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).

    [71] Yang Y H, Chen W, Fan J L et al. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy[J]. Biomedical Optics Express, 12, 354-366(2020).

    [72] Streich L, Boffi J C, Wang L et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy[J]. Nature Methods, 18, 1253-1258(2021).

    [73] Holtmaat A, Bonhoeffer T, Chow D K et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window[J]. Nature Protocols, 4, 1128-1144(2009).

    [74] Drew P J, Shih A Y, Driscoll J D et al. Chronic optical access through a polished and reinforced thinned skull[J]. Nature Methods, 7, 981-984(2010).

    [75] Yang G, Pan F, Parkhurst C N et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice[J]. Nature Protocols, 5, 201-208(2010).

    [76] Wang T Y, Ouzounov D G, Wu C Y et al. Three-photon imaging of mouse brain structure and function through the intact skull[J]. Nature Methods, 15, 789-792(2018).

    [77] Wang K, Du Y, Liu H J et al. Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo[J]. Journal of Biophotonics, 12, e201800360(2019).

    [78] Wang Y L, Chen M, Alifu N et al. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse[J]. ACS Nano, 11, 10452-10461(2017).

    [79] Liu Y L, Yi Y, Li Z et al. Multiphoton microscopy for monitoring the occurrence, metastasis and therapy of breast cancer[J]. Microwave and Optical Technology Letters, 63, 2470-2491(2021).

    [80] Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in intravital multiphoton microscopy of cancer[J]. Cancer Reports, 3, e1192(2020).

    [81] Baugh L M, Liu Z Y, Quinn K P et al. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease[J]. Nature Biomedical Engineering, 1, 914-924(2017).

    [82] Zhang R L, Li H, Wu Y H et al. Identification of human coronary atherosclerotic plaques using spectrum- and time-resolved multiphoton microscopy[J]. Chinese Journal of Lasers, 47, 0207025(2020).

    [83] Li Y, Shen B, Zou G et al. Super-multiplex nonlinear optical imaging unscrambles the statistical complexity of cancer subtypes and tumor microenvironment[J]. Advanced Science, 9, e2104379(2021).

    [84] Singh A K, Nair A V, Singh N D P. Small two-photon organic fluorogenic probes: sensing and bioimaging of cancer relevant biomarkers[J]. Analytical Chemistry, 94, 177-192(2022).

    [85] Sindhwani S, Syed A M, Ngai J et al. The entry of nanoparticles into solid tumours[J]. Nature Materials, 19, 566-575(2020).

    [86] Tozer G M, Kanthou C, Baguley B C. Disrupting tumour blood vessels[J]. Nature Reviews. Cancer, 5, 423-435(2005).

    [87] Wang S W, Liu J, Goh C C et al. NIR-II-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-I AIE luminogen[J]. Advanced Materials, 31, e1904447(2019).

    [88] Hodson L, Gunn P J. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state[J]. Nature Reviews Endocrinology, 15, 689-700(2019).

    [89] Gluchowski N L, Becuwe M, Walther T C et al. Lipid droplets and liver disease: from basic biology to clinical implications[J]. Nature Reviews Gastroenterology & Hepatology, 14, 343-355(2017).

    [90] Petersen M C, Vatner D F, Shulman G I. Regulation of hepatic glucose metabolism in health and disease[J]. Nature Reviews Endocrinology, 13, 572-587(2017).

    [91] Wei X C, Song H W, Yin L et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes[J]. Nature, 539, 294-298(2016).

    [92] Mutlu A S, Gao S M, Zhang H N et al. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans[J]. Nature Communications, 11, 1450(2020).

    [93] Kuznetsova T, Prange K H M, Glass C K et al. Transcriptional and epigenetic regulation of macrophages in atherosclerosis[J]. Nature Reviews. Cardiology, 17, 216-228(2020).

    [94] Folick A, Min W, Wang M C. Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy[J]. Current Opinion in Genetics & Development, 21, 585-590(2011).

    [95] Zumbusch A, Langbein W, Borri P. Nonlinear vibrational microscopy applied to lipid biology[J]. Progress in Lipid Research, 52, 615-632(2013).

    [96] Thiele C, Wunderling K, Leyendecker P. Multiplexed and single cell tracing of lipid metabolism[J]. Nature Methods, 16, 1123-1130(2019).

    [97] Mehlem A, Hagberg C E, Muhl L et al. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease[J]. Nature Protocols, 8, 1149-1154(2013).

    [98] Fam T K, Klymchenko A S, Collot M. Recent advances in fluorescent probes for lipid droplets[J]. Materials, 11, 1768(2018).

    [99] Wang S W, Li X Q, Chong S Y et al. In vivo three-photon imaging of lipids using ultrabright fluorogens with aggregation-induced emission[J]. Advanced Materials, 33, e2007490(2021).

    Shaowei Wang, Ming Lei. Near Infrared-Ⅱ Excited Multiphoton Fluorescence Imaging[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617002
    Download Citation