• Journal of Semiconductors
  • Vol. 43, Issue 11, 112701 (2022)
Xiangrui Meng*, Changchun Chai*, Fuxing Li*, Yi Sun*, and Yintang Yang*
Author Affiliations
  • Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi’an 710071, China
  • show less
    DOI: 10.1088/1674-4926/43/11/112701 Cite this Article
    Xiangrui Meng, Changchun Chai, Fuxing Li, Yi Sun, Yintang Yang. High-power microwaves response characteristics of silicon and GaAs solar cells[J]. Journal of Semiconductors, 2022, 43(11): 112701 Copy Citation Text show less
    References

    [1] L Schirone, M Ferrara, P Granello et al. Power bus management techniques for space missions in low earth orbit. Energies, 14, 7932(2021).

    [2] M Cao, T Zhang, Y Liu et al. A performance degradation model of solar cells in an on-orbit resource satellite based on peak currents. Sol Energy, 189, 26(2019).

    [3] H A Krishna, N K Misra, M S Suresh. Use of solar cells for measuring temperature of solar cell blanket in spacecrafts. Sol Energy Mater Sol Cells, 102, 184(2012).

    [4] S H Min, H Jung, O Kwon et al. Analysis of electromagnetic pulse effects under high-power microwave sources. IEEE Access, 9, 136775(2021).

    [5] T Aburaya, T Hisamatsu, S Matsuda. Analysis of 10 years' flight data of solar cell monitor on ETS-V. Sol Energy Mater Sol Cells, 68, 15(2001).

    [6] R Hoad, W A Radasky. Progress in high-altitude electromagnetic pulse (HEMP) standardization. IEEE Tran Electromagn Compat, 55, 532(2013).

    [7] Z P Li, J Li, J Sun et al. High power microwave damage mechanism on high electron mobility transistor. Acta Phys Sin, 65, 168501(2016).

    [8] R Kichouliya, M J Thomas. Interaction of high power electromagnetic pulses with power cables and electronic systems. 2016 IEEE International Symposium on Electromagnetic Compatibility (EMC), 159(2016).

    [9] F Brauer, F Sabath, J L ter Haseborg. Susceptibility of IT network systems to interferences by HPEM. 2009 IEEE International Symposium on Electromagnetic Compatibility, 237(2009).

    [10] Y Liu, C C Chai, X H Yu et al. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Phys Sin, 65, 038402(2016).

    [11] J Q Zhang, Z S Liang. Effects of high-altitude electromagnetic pulse on overhead pipeline. Int J Appl Electromagn Mechan, 57, 1(2018).

    [12] C Hao, C Jiang. Robust wireless sensor network against strong electromagnetic pulse. IEEE Sens J, 21, 5572(2021).

    [13] J Li, A Aierken, Y Liu et al. A brief review of high efficiency III-V solar cells for space application. Front Phys, 8, 631925(2021).

    [14] E M Gaddy. Cost performance of multi-junction, gallium arsenide, and silicon solar cells on spacecraft. Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, 293(1996).

    [15] A U Rehman, S H Lee, S H Lee. Silicon space solar cells: progression and radiation-resistance analysis. J Korean Phys Soc, 68, 593(2016).

    [16] Y J Lee, B S Kim, S Ifitiquar et al. Silicon solar cells: Past, present and the future. J Korean Phys Soc, 65, 355(2014).

    [17] T M Razykov, C Ferekides, D L Morel et al. Solar photovoltaic electricity: Current status and future prospects. Sol Energy, 85, 1580(2011).

    [18] G Gabetta, D Cospito, R Campesato et al. Qualification of low cost triple junction GaInP/GaAs/Ge solar cell assemblies with external bypass diode connected by insulated cell P/diode N interconnects. 2019 European Space Power Conference(2019).

    [19] K Booker, Y Mayon, C Jones et al. GaAs sliver solar cells for linear microconcentrator applications. 2020 47th IEEE Photovoltaic Specialists Conference(2020).

    [20] S Kawakita, M Imaizumi, K Makita et al. High efficiency and radiation resistant InGaP/GaAs//CIGS stacked solar cells for space applications. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2574(2016).

    [21] Z H Xue, L Xu, Z R Lu. Coupling simulation analysis of high power electromagnetic pulse on solar cell. J Microwaves, S01, 355(2020).

    [22] H Wang, C Chai, Y Liu et al. Damage effects and mechanism of GaAs solar cells induced by high-power microwaves. IEICE Electron Express, 18, 1(2021).

    [23] H Yoon, J E Granata, P Hebert et al. Recent advances in high-efficiency III-V multi-junction solar cells for space applications: Ultra triple junction qualification. Prog Photovolt, 13, 133(2005).

    [24] Z G Huang, K Gao, X G Wang et al. Large-area MACE Si nano-inverted-pyramids for PERC solar cell application. Sol Energy, 188, 300(2019).

    [25] H Li, C C Chai, Y Liu et al. Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves. Chin Phys B, 27, 088502(2018).

    [26] M P Deshmukh, N Jampana. Measurement of silicon and GaAs/Ge solar cell device parameters. Sol Energy Mater Sol Cells, 89, 403(2005).

    [27] A Varpula, K Aapo, M Prunnila et al. Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells. Sol Energy Mater Sol Cells, 134, 351(2015).

    [28] L Novikov. The present and future of space materials research. Moscow University Physics Bulletin, 65, 259(2010).

    [29] D C Wunsch, R R Bell. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages. IEEE Trans Nucl Sci, 15, 244(1968).

    [30] S Shuja, B Yilbas, S Shazli. Laser repetitive pulse heating influence of pulse duty on temperature rise. Heat Mass Transfer, 43, 949(2007).

    [31] Y Li, H Xie, H Yan et al. A Thermal failure model for MOSFETs under repetitive electromagnetic pulses. IEEE Access, 8, 228245(2020).

    Xiangrui Meng, Changchun Chai, Fuxing Li, Yi Sun, Yintang Yang. High-power microwaves response characteristics of silicon and GaAs solar cells[J]. Journal of Semiconductors, 2022, 43(11): 112701
    Download Citation