• Acta Optica Sinica
  • Vol. 41, Issue 5, 0512004 (2021)
Bing Han1、**, Guojun Li1、2、***, Zejun Hu2、*, and Yisheng Zhang3、****
Author Affiliations
  • 1School of Electronic Engineering, Xidian University, Xi′an, Shaanxi 710071, China
  • 2MNR Key Laboratory of Polar Science, Polar Research Institute of China, Shanghai 200136, China
  • 3Institute of Applied Meteorology, Beijing 100029, China
  • show less
    DOI: 10.3788/AOS202141.0512004 Cite this Article Set citation alerts
    Bing Han, Guojun Li, Zejun Hu, Yisheng Zhang. Radiation Calibration of All-Sky Auroral Imager Based on Stellar Radiation Stability[J]. Acta Optica Sinica, 2021, 41(5): 0512004 Copy Citation Text show less
    References

    [1] Xu J Y, Li Q Z, Yue J et al. Concentric gravity waves over Northern China observed by an airglow imager network and satellites[J]. Journal of Geophysical Research: Atmospheres, 120, 11058-11078(2015).

    [2] Wang C M, Li Q Z, Xu J Y et al. Gravity wave characteristics from multi-stations observation with OH all-sky airglowimagers over mid-latitude regions of China[J]. Chinese Journal of Geophysics, 59, 1566-1577(2016).

    [3] Hu Z J, Yang H, Huang D et al. Synoptic distribution of dayside aurora: multiple-wavelength all-sky observation at Yellow River Station in Ny-Ålesund, Svalbard[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 794-804(2009). http://www.sciencedirect.com/science/article/pii/S1364682609000339

    [4] Hu Z J, He F, Liu J J et al. Multi-wavelength and multi-scale aurora observations at the Chinese Zhongshan Station in Antarctica[J]. Polar Science, 14, 1-8(2017). http://www.sciencedirect.com/science/article/pii/S1873965217300348

    [5] Hu Z J, Yang H, Liang J et al. The 4-emission-core structure of dayside aurora oval observed by all-sky imager at 557.7 nm in Ny-Ålesund, Svalbard[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 638-642(2010). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010JASTP..72..638Z&db_key=AST&link_type=ABSTRACT

    [6] Hu Z J, Yang H G, Han D S et al. Dayside auroral emissions controlled by IMF: a survey for dayside auroral excitation at 557.7 and 630.0 nm in Ny-Ålesund, Svalbard[J]. Journal of Geophysical Research: Space Physics, 117, A02201-A02214(2012).

    [7] Hu Z J, Yang H G, Hu H Q et al. The hemispheric conjugate observation ofpostnoon “bright spots”/auroral spirals[J]. Journal of Geophysical Research: Space Physics, 118, 1428-1434(2013). http://adsabs.harvard.edu/abs/2013JGRA..118.1428H

    [8] Hu Z J, Ebihara Y, Yang H G et al. Hemispheric asymmetry of the structure of dayside auroral oval[J]. Geophysical Research Letters, 41, 8696-8703(2014). http://onlinelibrary.wiley.com/doi/10.1002/2014GL062345/full

    [9] Hu Z J, Yang Q J, Liang J M et al. Variation and modeling of ultraviolet auroral oval boundaries associated with interplanetary and geomagnetic parameters[J]. Space Weather, 15, 606-622(2017). http://onlinelibrary.wiley.com/doi/10.1002/2016sw001530/pdf

    [10] Hu Z J, Yang H G, Ebihara Y et al. Surveys of 557.7/630.0 nm dayside auroral emissions in Ny-Ålesund, svalbard, and south pole station[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 143-154(2017).

    [11] Qiu Q, Yang H G, Lu Q M et al. Widths of dayside auroral arcs observed at the Chinese Yellow River Station[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 102, 222-227(2013). http://www.sciencedirect.com/science/article/pii/S1364682613001752

    [12] Qiu Q, Yang H G, Lu Q M et al. Orientation variation of dayside auroral arc alignments obtained from all-sky observation at Yellow River station, Svalbard[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 142, 20-24(2016). http://www.sciencedirect.com/science/article/pii/S1364682616300505

    [13] Shi R, Hu Z J, Ni B B et al. Modulation of the dayside diffuse auroral intensity by the solar wind dynamic pressure[J]. Journal of Geophysical Research: Space Physics, 119, 10092-10099(2014).

    [14] Qiu Q, Yang H G, Lu Q M et al. Correlation between emission intensities in dayside auroral arcs and precipitating electron spectra[J]. Chinese Journal of Geophysics, 60, 489-498(2017).

    [15] Xing Z Y, Yang H G, Wu Z S et al. A parameter model of auroral emissions and particle precipitation near magnetic noon[J]. Chinese Journal of Geophysics, 56, 2163-2170(2013).

    [16] Kaeppler S R, Hampton D L, Nicolls M J et al. An investigation comparing ground-based techniques that quantify auroral electron flux and conductance[J]. Journal of Geophysical Research: Space Physics, 120, 9038-9056(2015). http://onlinelibrary.wiley.com/doi/10.1002/2015JA021396

    [17] Rees M H, Luckey D. Auroral electron energy derived from ratio of spectroscopic emissions 1. Model computations[J]. Journal of Geophysical Research, 79, 5181-5186(1974). http://onlinelibrary.wiley.com/doi/10.1029/JA079i034p05181/abstract

    [18] Xu H Y, Zhang L M, Huang W X et al. On-board absolute radiometric calibration and validation based on solar diffuser of HY-1C SCS[J]. Acta Optica Sinica, 40, 0928002(2020).

    [19] He X W, Han Q, Feng X H et al. Calibration accuracy evaluation of visible and near-infrared bands of FY-3B MERIS[J]. Acta Optica Sinica, 40, 1828001(2020).

    [20] Zhang H P, Hu Z J, Hu Y G et al. Calibration and verification of all-sky auroral image parameters by star maps[J]. Chinese Journal of Geophysics, 63, 401-411(2020).

    [21] Xu H Y, Zhang L M, Li X et al. A relative radiometric calibration method based on solar diffuserresearch for a linear array CCD detector[J]. Acta Optica Sinica, 40, 0628002(2020).

    [22] Zhang W Y. Research on camera on-orbit radial calibration and ground verification methods based on infrared catalog extrapolation Beijing: University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics,[D]. Chinese Academy of Sciences, 1-8(2017).

    [23] Li M F, Hu Y D, Cui S S et al. Design and testing of a portable multichannel reference light source[J]. Acta Optica Sinica, 40, 2001003(2020).

    [24] Megessier C. Accuracy of the astrophysical absolute flux calibrations: visible and near-infrared[J]. Astronomy and Astrophysics, 296, 771-778(1995). http://adsabs.harvard.edu/abs/1995A%26A...296..771M

    [25] Inglis S J. Planets. Stars,[M]. Galaxies, 258-259(1979).

    [26] Liu X F[M]. Fundamental astronomy, 11-11(2004).

    [27] Yang H G, Liu R Y, Natsuo S. Intensity correction in all-sky auroral image projection transform[J]. Chinese Science Bulletin, 42, 700-703(1997).

    [28] Meng C I. Simultaneous observations of low-energy electron precipitation and optical auroral arcs in the evening sector by the DMSP 32 satellite[J]. Journal of Geophysical Research Atmospheres, 81, 2771-2785(1976).

    [29] Bailey S M, Barth C A, Solomon S C. A model of nitric oxide in the lower thermosphere[J]. Journal of Geophysical Research: Space Physics, 107, 1205-1216(2002). http://onlinelibrary.wiley.com/doi/10.1029/2001JA000258

    [30] Nagy A F, Banks P M. Photoelectron fluxes in the ionosphere[J]. Journal of Geophysical Research, 75, 6260-6270(1970). http://adsabs.harvard.edu/abs/1970JGR....75.6260N

    [31] Solomon S C, Hays P B, Abreu V J. The auroral 6300 Å emission: observations and modeling[J]. Journal of Geophysical Research: Space Physics, 93, 9867-9882(1988). http://onlinelibrary.wiley.com/doi/10.1029/JA093iA09p09867/pdf

    [32] Solomon S C, Abreu V J. The 630 nm dayglow[J]. Journal of Geophysical Research: Space Physics, 94, 6817-6824(1989).

    [33] Solomon S C. Auroral particle transport using Monte Carlo and hybrid methods[J]. Journal of Geophysical Research: Space Physics, 106, 107-116(2001). http://onlinelibrary.wiley.com/doi/10.1029/2000JA002011/abstract

    [34] Solomon S C, Bailey S M, Woods T N. Effect of solar soft X-rays on the lowerionosphere[J]. Geophysical Research Letters, 28, 2149-2152(2001). http://onlinelibrary.wiley.com/doi/10.1029/2001GL012866

    Bing Han, Guojun Li, Zejun Hu, Yisheng Zhang. Radiation Calibration of All-Sky Auroral Imager Based on Stellar Radiation Stability[J]. Acta Optica Sinica, 2021, 41(5): 0512004
    Download Citation