• Acta Optica Sinica
  • Vol. 42, Issue 1, 0106001 (2022)
Shenghui Shi1, Qinglin Nie1, Shanghai Jiang1, Shengxi Wu2, bin Tang1、*, and Mingfu Zhao1、**
Author Affiliations
  • 1Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
  • 2Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
  • show less
    DOI: 10.3788/AOS202242.0106001 Cite this Article Set citation alerts
    Shenghui Shi, Qinglin Nie, Shanghai Jiang, Shengxi Wu, bin Tang, Mingfu Zhao. Biosensor Based on Dual-Resonance Long-Period Fiber Gratings for Detection of H9N2 Subtype Avian Influenza Virus[J]. Acta Optica Sinica, 2022, 42(1): 0106001 Copy Citation Text show less
    References

    [1] Homme P J, Easterday B C. Avian influenza virus infections. I. characteristics of influenza A/Turkey/Wisconsin/1966 virus[J]. Avian Diseases, 14, 66-74(1970).

    [2] Liu H Q, Liu X F, Cheng J et al. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001[J]. Avian Diseases, 47, 116-127(2003).

    [3] Sakurai A, Shibasaki F. Updated values for molecular diagnosis for highly pathogenic avian influenza virus[J]. Viruses, 4, 1235-1257(2012).

    [4] Chiu Y C, Chu W Y, Tsao Z et al. Antigen-capture enzyme-linked immunosorbent assays for detection of different H5 avian influenza A virus[J]. Journal of Veterinary Diagnostic Investigation, 24, 716-718(2012).

    [5] Charlton B, Crossley B, Hietala S. Conventional and future diagnostics for avian influenza[J]. Comparative Immunology, Microbiology and Infectious Diseases, 32, 341-350(2009).

    [6] Chen W, He B, Li C et al. Real-time RT-PCR for H5N1 avian influenza A virus detection[J]. Journal of Medical Microbiology, 56, 603-607(2007).

    [7] Kaiser L, Briones M S, Hayden F G. Performance of virus isolation and Directigen Flu A to detect influenza A virus in experimental human infection[J]. Journal of Clinical Virology, 14, 191-197(1999).

    [8] Li J, Chen S, Evans D H. Typing and subtyping influenza virus using DNA microarrays and multiplex reverse transcriptase PCR[J]. Journal of Clinical Microbiology, 39, 696-704(2001).

    [9] Fu C, Zhong X, Liao C et al. Thin-core-fiber-based long-period fiber grating for high-sensitivity refractive index measurement[J]. IEEE Photonics Journal, 7, 7103208(2015).

    [10] Guo Y C, Liu Y G, Wang Z et al. Dual resonance and dual parameter sensor of few mode fiber long period grating[J]. Acta Optica Sinica, 38, 0906003(2018).

    [11] Huang X C, Wu X W, Gao S C et al. Response characteristic of twisting second-azimuthal-order few-mode long period fiber grating[J]. Chinese Journal of Lasers, 46, 1206001(2019).

    [12] Tao H, Mi Y A, Ren W H et al. Vector mode conversion based on tilted long-period fiber grating written in ring fiber[J]. Chinese Journal of Lasers, 47, 0606002(2020).

    [13] Esposito F, Sansone L, Taddei C et al. Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer[J]. Sensors and Actuators B: Chemical, 274, 517-526(2018).

    [14] Quero G, Zuppolini S, Consales M et al. Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria[J]. Sensors and Actuators B: Chemical, 230, 510-520(2016).

    [15] James S W, Korposh S, Lee S W et al. A long period grating-based chemical sensor insensitive to the influence of interfering parameters[J]. Optics Express, 22, 8012-8023(2014).

    [16] Esposito F, Sansone L, Srivastava A et al. Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing[J]. Biosensors & Bioelectronics, 172, 112747(2021).

    [17] Celebanska A, Chiniforooshan Y, Janik M et al. Bioinspired carbohydrate-decorated long-period fiber grating for label-free bacteria detection[J]. IEEE Sensors Journal, 19, 11965-11971(2019).

    [18] Shu X, Huang D. Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm -period fiber grating[J]. Optics Communications, 171, 65-69(1999).

    [19] Shu X, Zhang L, Bennion I. Sensitivity characteristics of long-period fiber gratings[J]. Journal of Lightwave Technology, 20, 255-266(2002).

    [20] Topliss S M, James S W, Davis F et al. Optical fibre long period grating based selective vapour sensing of volatile organic compounds[J]. Sensors and Actuators B: Chemical, 143, 629-634(2010).

    [21] Smietana M, Bock J W, Mikulic P et al. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings[J]. Optics Express, 19, 7971-7978(2011).

    [22] Janczuk-Richter M, Dominik M. Ro niecka E, et al. Long-period fiber grating sensor for detection of viruses[J]. Sensors and Actuators B: Chemical, 250, 32-38(2017).

    [23] Marques L, Hernandez F U, James S W et al. Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles[J]. Biosensors & Bioelectronics, 75, 222-231(2016).

    [24] Tan C L, Cao X H, Wu X J et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 117, 6225-6331(2017).

    [25] Rees N D, James S W, Tatam R P et al. Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays[J]. Optics Letters, 27, 686-688(2002).

    [26] Ali M A, Srivastava S, Solanki P R et al. Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor[J]. Applied Physics Letters, 101, 084105(2012).

    [27] Shafiee H, Lidstone E A, Jahangir M et al. Nanostructured optical photonic crystal biosensor for HIV viral load measurement[J]. Scientific Reports, 4, 4116(2014).

    [28] Francesco C, Palas B, Cosimo T et al. Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors[J]. Analytical Chemistry, 87, 12024-12031(2015).

    [29] Coelho L, Santos J L et al. Aptamer-based fiber sensor for thrombin detection[J]. Journal of Biomedical Optics, 21, 087005(2016).

    [30] Shi S H, Wang X, Luo B B et al. Avian influenza virus immunosensor based on etched long period fiber grating coated with graphene oxide[J]. Acta Photonica Sinica, 49, 0106002(2020).

    [31] Luo B B, Wu S X, Zou W G et al. Label-free immunoassay for porcine circovirus type 2 based on excessively tilted fiber grating modified with staphylococcal protein A[J]. Biosensors & Bioelectronics, 86, 1054-1060(2016).

    [32] Zhou X, Shi S, Zhang Z et al. Refractive index sensing by using mechanically induced long-period grating[J]. IEEE Photonics Journal, 4, 119-125(2012).

    [33] Biswas P, Basumallick N, Bandyopadhyay S et al. Sensitivity enhancement of turn-around-point long period gratings by tuning initial coupling condition[J]. IEEE Sensors Journal, 15, 1240-1245(2015).

    [34] Chen X F, Zhou K M, Zhang L et al. Dual-peak long-period fiber gratings with enhanced refractive index sensitivity by finely tailored mode dispersion that uses the light cladding etching technique[J]. Applied Optics, 46, 451-455(2007).

    [35] Cho Y, Ahmed F, Joe H E et al. Fabrication of a screw-shaped long-period fiber grating for refractive index sensing[J]. IEEE Photonics Technology Letters, 29, 2242-2245(2017).

    [36] Li B R, Chen C W, Yang W L et al. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor[J]. Biosensors & Bioelectronics, 45, 252-259(2013).

    [37] Socorro-Leránoz A B, Santano D, Villar I D et al. Trends in the design of wavelength-based optical fibre biosensors (2008—2018)[J]. Biosensors & Bioelectronics: X, 1, 100015(2019).

    [38] Chiavaioli F, Biswas P, Trono C et al. Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings[J]. Biosensors & Bioelectronics, 60, 305-310(2014).

    [39] Li B B, Xue Q, Li J F et al. Development of a complex gold-immunochromatography test strip for Newcastle disease virus and avian influenza virus[J]. Animal Husbandry & Veterinary Medicine, 41, 33-37(2009).

    [40] Zhang X, Dhawane A N, Sweeney J et al. Electrochemical assay to detect influenza viruses and measure drug susceptibility[J]. Angewandte Chemie, 54, 5929-5932(2015).

    [41] Yan X F, Li Y T, Wang R H et al. An impedance immunosensor for detection of H5 subtype avian influenza virus[J]. Chinese Journal of Analytical Chemistry, 40, 1507-1513(2012).

    [42] Sun Y, Xu L, Zhang F D et al. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus[J]. Biosensors & Bioelectronics, 89, 906-912(2017).

    [43] Ye W W, Tsang M K, Liu X et al. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype[J]. Small, 10, 2390-2397(2014).

    [44] Xu J, Suarez D, Gottfried D S. Detection of avian influenza virus using an interferometric biosensor[J]. Analytical and Bioanalytical Chemistry, 389, 1193-1199(2007).

    [45] Chi L W, Marissa C, Heather M et al. A phase-intensity surface plasmon resonance biosensor for avian influenza A (H5N1) detection[J]. Sensors, 17, 2363(2017).

    Shenghui Shi, Qinglin Nie, Shanghai Jiang, Shengxi Wu, bin Tang, Mingfu Zhao. Biosensor Based on Dual-Resonance Long-Period Fiber Gratings for Detection of H9N2 Subtype Avian Influenza Virus[J]. Acta Optica Sinica, 2022, 42(1): 0106001
    Download Citation