• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 114003 (2021)
Hu Yong1、2、*, Yang Xiaokang1、2, Kang Wenjiang1、2, Ding Yutian1、2, Xu Jiayu1、2, and Zhang Huiying1、2
Author Affiliations
  • 1School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • 2State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • show less
    DOI: 10.3788/LOP202158.0114003 Cite this Article Set citation alerts
    Hu Yong, Yang Xiaokang, Kang Wenjiang, Ding Yutian, Xu Jiayu, Zhang Huiying. Effects of Combination of Powders with Different Particle Sizes on Surface Roughness and Internal Defects of IN738 Alloy Formed by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2021, 58(1): 114003 Copy Citation Text show less
    References

    [1] Gu D D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012). http://www.tandfonline.com/doi/full/10.1179/1743280411Y.0000000014

    [2] Ma Y Y, Liu Y D, Shi W T et al. Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder[J]. Laser & Optoelectronics Progress, 56, 101403(2019).

    [3] Wan L, Wang S Q, Zhang X W et al. Forming quality of titanium alloys by selective laser melting based on partition scanning[J]. Laser & Optoelectronics Progress, 55, 091401(2018).

    [4] Carter L N, Martin C, Withers P J et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J]. Journal of Alloys and Compounds, 615, 338-347(2014). http://www.sciencedirect.com/science/article/pii/S092583881401528X

    [5] Catchpole-Smith S, Aboulkhair N, Parry L et al. Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys[J]. Additive Manufacturing, 15, 113-122(2017).

    [6] Perevoshchikova N, Rigaud J, Sha Y et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design[J]. Rapid Prototyping Journal, 23, 881-892(2017).

    [7] Wang H, Zhang X, Wang G B et al. Selective laser melting of the hard-to-weld IN738LC superalloy: efforts to mitigate defects and the resultant microstructural and mechanical properties[J]. Journal of Alloys and Compounds, 807, 151662(2019). http://www.sciencedirect.com/science/article/pii/S0925838819328956

    [8] Zhou Y, Duan L C, Wu X L et al. Effect of powder particle size on wear and corrosion resistance of S136 mould steels fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 55, 101403(2018).

    [9] Wu W H, Yang Y Q, Wei G Q. Direct manufacturing of precision metal parts by selective laser melting[J]. China Journal of Lasers, 34, 175-179(2007).

    [10] Li K F, Mao X H, Khanlari K et al. Effects of powder size distribution on the microstructural and mechanical properties of a Co-Cr-W-Si alloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 825, 153973(2020). http://www.researchgate.net/publication/338821259_Effects_of_powder_size_distribution_on_the_microstructural_and_mechanical_properties_of_a_Co-Cr-W-Si_alloy_fabricated_by_selective_laser_melting

    [11] Yang Q, Hu Y, Ding Y T et al. Properties and formability of IN738 alloy powder for selective laser melting[J]. Laser & Optoelectronics Progress, 56, 101402(2019).

    [12] Sun J F, Yang Y Q, Yang Z. Study on surface roughness of selective laser melting Ti6Al4V based on powder characteristics[J]. Chinese Journal of Lasers, 43, 0702004(2016).

    [13] Nguyen Q B. Nai M L S, Zhu Z G, et al. Characteristics of inconel powders for powder-bed additive manufacturing[J]. Engineering, 3, 695-700(2017).

    [14] Wei Q S, Wang L, Zhang S et al[J]. Study on the effects of powder properties on the performance of stainless steel parts produced by selective laser melting Electromachining & Mould, 2011, 52-56, 69.

    [15] Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts[J]. Rapid Prototyping Journal, 17, 195-202(2011). http://www.emeraldinsight.com/doi/full/10.1108/13552541111124770

    [16] Gu H F, Gong H J. Dilip J J S, et al. Effects of powder variationon the microstructure and tensile strength of Ti6Al4V parts fabricated by selective laser melting. [C]//International Solid Freeform Fabrication Symposium. Aug. 2014, Austin, USA: FFS, 39, 470-483(2014).

    [17] Wang L, Wei Q S, He W T et al. Influence of powder characteristic and process parameters on SLM formability[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 40, 20-23(2012).

    [18] Egbewande A T, Zhang H R, Sidhu R K et al. Improvement in laser weldability of INCONEL 738 superalloy through microstructural modification[J]. Metallurgical & Materials Transactions A, 40, 2694-2704(2009).

    [19] Campo E, Lupinc V. High temperature structural materials for gas turbines[J]. Metallurgical Science & Technology, 11, 31-45(2013).

    [20] Balikci E, Mirshams R A, Raman A. Tensile strengthening in the nickel-base superalloy IN738LC[J]. Journal of Materials Engineering and Performance, 9, 324-329(2000).

    [21] Zhong M L, Sun H Q, Liu W J et al. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy[J]. Scripta Materialia, 53, 159-164(2005). http://www.sciencedirect.com/science/article/pii/S1359646205002022

    [22] Sames W J, Unocic K A, Helmreich G W et al. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing[J]. Additive Manufacturing, 13, 156-165(2017).

    [23] Slotwinski J A, Garboczi E J. Metrology needs for metal additive manufacturing powders[J]. JOM, 67, 538-543(2015).

    [24] Rickenbacher L, Etter T, Hövel S et al. High temperature material properties of IN738LC processed by selective laser melting (SLM) technology[J]. Rapid Prototyping Journal, 19, 282-290(2013). http://www.emeraldinsight.com/doi/abs/10.1108/13552541311323281

    [25] Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Materials & Design, 89, 770-784(2016). http://www.sciencedirect.com/science/article/pii/S0264127515306055

    [26] Kunze K, Etter T, Grässlin J et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM)[J]. Materials Science and Engineering: A, 620, 213-222(2015). http://www.sciencedirect.com/science/article/pii/S0921509314012362

    [27] Qiu C L, Chen H X, Liu Q et al. On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting[J]. Materials Characterization, 148, 330-344(2019). http://www.sciencedirect.com/science/article/pii/S1044580318331176

    [28] Li R D. Research on the key basic issues in selective laser melting of metallic powder[D]. Wuhan: Huazhong University of Science and Technology(2010).

    [29] Akram J, Chalavadi P, Pal D et al. Understanding grain evolution in additive manufacturing through modeling[J]. Additive Manufacturing, 21, 255-268(2018).

    [30] Tao P, Li H X, Huang B Y et al. The crystal growth, intercellular spacing and microsegregation of selective laser melted Inconel 718 superalloy[J]. Vacuum, 159, 382-390(2019). http://www.sciencedirect.com/science/article/pii/S0042207X18319845

    [31] Henderson M B, Arrell D, Larsson R et al. Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science and Technology of Welding and Joining, 9, 13-21(2004). http://www.ingentaconnect.com/content/maney/stwj/2004/00000009/00000001/art00002

    [32] Wang N, Mokadem S, Rappaz M et al. Solidification cracking of superalloy single- and bi-crystals[J]. Acta Materialia, 52, 3173-3182(2004).

    Hu Yong, Yang Xiaokang, Kang Wenjiang, Ding Yutian, Xu Jiayu, Zhang Huiying. Effects of Combination of Powders with Different Particle Sizes on Surface Roughness and Internal Defects of IN738 Alloy Formed by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2021, 58(1): 114003
    Download Citation