• Journal of Innovative Optical Health Sciences
  • Vol. 17, Issue 1, 2350025 (2024)
Jing Zhou1, Tianxiang Wu1、2, Runze Chen1, Liang Zhu3, Hequn Zhang1、3, Yifei Li1, Liying Chen1, and Jun Qian1、2、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical, Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, P. R. China
  • 2Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, P. R. China
  • 3College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Zhejiang University, Hangzhou 310027, P. R. China
  • show less
    DOI: 10.1142/S1793545823500256 Cite this Article
    Jing Zhou, Tianxiang Wu, Runze Chen, Liang Zhu, Hequn Zhang, Yifei Li, Liying Chen, Jun Qian. Self-confocal NIR-II fluorescence microscopy for multifunctional in vivo imaging[J]. Journal of Innovative Optical Health Sciences, 2024, 17(1): 2350025 Copy Citation Text show less
    References

    [1] T. Ishizawa, N. Fukushima, J. Shibahara, K. Masuda, S. Tamura, T. Aoki, K. Hasegawa, Y. Beck, M. Fukayama, N. Kokudo. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, 115, 2491-2504(2009).

    [2] B. Zhu, E. M. Sevick-Muraca. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br. J. Radiol., 88, 20140547(2015).

    [3] Z. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, J. Tian. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng., 4, 259-271(2020).

    [4] J. Zhou, X. Fan, D. Wu, J. Liu, Y. Zhang, Z. Ye, D. Xue, M. He, L. Zhu, Z. Feng, A. N. Kuzmin, W. Liu, P. N. Prasad, J. Qian. Hot-band absorption of indocyanine green for advanced anti-stokes fluorescence bioimaging. Light Sci. Appl., 10, 182(2021).

    [5] Y. Li, X. Fan, Y. Li, L. Zhu, R. Chen, Y. Zhang, H. Ni, Q. Xia, Z. Feng, B. Z. Tang, J. Qian, H. Lin. Biologically excretable AIE nanoparticles wear tumor cell-derived “exosome caps” for efficient NIR-II fluorescence imaging-guided photothermal therapy. Nano Today, 41, 101333(2021).

    [6] P. Tolar, H. W. Sohn, S. K. Pierce. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol., 6, 1168-1176(2005).

    [7] M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, D. C. Prasher. Green fluorescent protein as a marker for gene expression. Science, 263, 802-805(1994).

    [8] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell, C. Heiner, S. b. H. Kent, L. E. Hood. Fluorescence detection in automated DNA sequence analysis. Nature, 321, 674-679(1986).

    [9] P. A. Summers, B. W. Lewis, J. Gonzalez-Garcia, R. M. Porreca, A. H. M. Lim, P. Cadinu, N. Martin-Pintado, D. J. Mann, J. B. Edel, J. B. Vannier, M. K. Kuimova, R. Vilar. Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nat. Commun., 12, 162(2021).

    [10] Y. Yu, J. Yu, Z. L. Huang, F. Zhou. Application of super-resolution fluorescence microscopy in hematologic malignancies. J. Innov. Opt. Health Sci., 15, 2230005(2022).

    [11] J. Liao, J. Qu, Y. Hao, J. Li. Deep-learning-based methods for super-resolution fluorescence microscopy. J. Innov. Opt. Health Sci., 16, 2230016(2022).

    [12] K. Wang, S. Tang, S. Wang, F. Lin, G. Zou, J. Qu, L. Liu. Monitoring microenvironment of Hep G2 cell apoptosis using two-photon fluorescence lifetime imaging microscopy. J. Innov. Opt. Health Sci., 15, 2250014(2022).

    [13] L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, L. L. Looger. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods, 6, 875-881(2009).

    [14] E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, R. K. Jain. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med., 7, 864-868(2001).

    [15] W. Wang, J. B. Wyckoff, V. C. Frohlich, Y. Oleynikov, S. Hüttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, J. S. Condeelis. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res., 62, 6278-6288(2002).

    [16] M. J. Miller, S. H. Wei, I. Parker, M. D. Cahalan. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science, 296, 1869-1873(2002).

    [17] J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol., 17, 763-767(1999).

    [18] A. Vogel, J. Noack, G. H‘̀uttman, G. Paltauf. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B, 81, 1015-1047(2005).

    [19] K. Welsher, S. P. Sherlock, H. Dai. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. U.S.A., 108, 8943-8948(2011).

    [20] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu. In vivothree-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon., 7, 205-209(2013).

    [21] D. Wu, D. Xue, J. Zhou, Y. Wang, Z. Feng, J. Xu, H. Lin, J. Qian, X. Cai. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis. Theranostics, 10, 3636-3651(2020).

    [22] Z. Feng, T. Tang, T. Wu, X. Yu, Y. Zhang, M. Wang, J. Zheng, Y. Ying, S. Chen, J. Zhou, X. Fan, D. Zhang, S. Li, M. Zhang, J. Qian. Perfecting and extending the near-infrared imaging window. Light Sci. Appl., 10, 197(2021).

    [23] Z. Feng, S. Bai, J. Qi, C. Sun, Y. Zhang, X. Yu, H. Ni, D. Wu, X. Fan, D. Xue, S. Liu, M. Chen, J. Gong, P. Wei, M. He, J. W. Y. Lam, X. Li, B. Z. Tang, L. Gao, J. Qian. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine. Adv. Mater., 33, e2008123(2021).

    [24] S. Zhu, S. Herraiz, J. Yue, M. Zhang, H. Wan, Q. Yang, Z. Ma, Y. Wang, J. He, A. L. Antaris, Y. Zhong, S. Diao, Y. Feng, Y. Zhou, K. Yu, G. Hong, Y. Liang, A. J. Hsueh, H. Dai. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater., 30, e1705799(2018).

    [25] W. Yu, B. Guo, H. Zhang, J. Zhou, X. Yu, L. Zhu, D. Xue, W. Liu, X. Sun, J. Qian. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots. Sci. Bull. (Beijing ), 64, 410-416(2019).

    [26] Z. Cai, L. Zhu, M. Wang, A. W. Roe, W. Xi, J. Qian. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics, 10, 4265-4276(2020).

    [27] X. Fan, Y. Li, Z. Feng, G. Chen, J. Zhou, M. He, L. Wu, S. Li, J. Qian, H. Lin. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv. Sci., 8, 2003972(2021).

    [28] X. Fan, Q. Xia, Y. Zhang, Y. Li, Z. Feng, J. Zhou, J. Qi, B. Z. Tang, J. Qian, H. Lin. Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD). Adv. Healthc. Mater., 10, 2101043(2021).

    [29] A. N. Bashkatov, E. A. Genina, V. V. Tuchin. Optical properties of skin, subcutaneous, and muscle tissues: A review. J. Innov. Opt. Health Sci., 04, 9-38(2011).

    [30] M. He, D. Li, Z. Zheng, H. Zhang, T. Wu, W. Geng, Z. Hu, Z. Feng, S. Peng, L. Zhu, W. Xi, D. Zhu, B. Z. Tang, J. Qian. Aggregation-induced emission nanoprobe assisted ultra-deep through-skull three-photon mouse brain imaging. Nano Today, 45, 101536(2022).

    [31] Y. Li, Z. Cai, S. Liu, H. Zhang, S. T. H. Wong, J. W. Y. Lam, R. T. K. Kwok, J. Qian, B. Z. Tang. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat. Commun., 11, 1255(2020).

    [32] F. Heymann, P. M. Niemietz, J. Peusquens, C. Ergen, M. Kohlhepp, J. C. Mossanen, C. Schneider, M. Vogt, R. H. Tolba, C. Trautwein, C. Martin, F. Tacke. Long term intravital multiphoton microscopy imaging of immune cells in healthy and diseased liver using CXCR6.Gfp reporter mice. J. Vis. Exp., 24, 52607(2015).

    [33] M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. W. Pang, H. Dai. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. U.S.A., 115, 6590-6595(2018).

    [34] J. L. Nxumalo, M. Teranaka, W. G. Schenk. Sensitivity of indocyanine green (ICG) half-life changes relative to circulatory shock state. J. Surg. Res, 23, 400-404(1977).

    [35] A. De Gasperi, E. Mazza, M. Prosperi. Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery?. World J. Hepatol., 8, 355-367(2016).

    [36] R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt., 28, 2318-2324(1989).

    [37] B. Gysbrechts, L. Wang, N. N. Trong, H. Cabral, Z. Navratilova, F. Battaglia, W. Saeys, C. Bartic. Light distribution and thermal effects in the rat brain under optogenetic stimulation. J. Biophoton., 9, 576-585(2016).

    [38] F. Wang, H. Wan, Z. Ma, Y. Zhong, Q. Sun, Y. Tian, L. Qu, H. Du, M. Zhang, L. Li, H. Ma, J. Luo, Y. Liang, W. J. Li, G. Hong, L. Liu, H. Dai. Light-sheet microscopy in the near-infrared II window. Nat. Methods, 16, 545-552(2019).

    [39] P. E. Marques, M. M. Antunes, B. A. David, R. V. Pereira, M. M. Teixeira, G. B. Menezes. Imaging liver biology in vivo using conventional confocal microscopy. Nat. Protocol, 10, 258-268(2015).

    [40] J. Yu, R. Zhang, Y. Gao, Z. Sheng, M. Gu, Q. Sun, J. Liao, T. Wu, Z. Lin, P. Wu, L. Kang, H. Li, L. Zhang, W. Zheng. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window. Opt. Lett., 45, 3305-3308(2020).

    [41] L. Streich, J. C. Boffi, L. Wang, K. Alhalaseh, M. Barbieri, R. Rehm, S. Deivasigamani, C. T. Gross, A. Agarwal, R. Prevedel. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nat. Methods, 18, 1253-1258(2021).

    [42] Y. Hontani, F. Xia, C. Xu. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Sci. Adv., 7, eabf3531(2021).

    [43] K. Choe, Y. Hontani, T. Wang, E. Hebert, D. G. Ouzounov, K. Lai, A. Singh, W. Béguelin, A. M. Melnick, C. Xu. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol., 23, 330-340(2022).

    [44] M. A. Yaseen, J. Sutin, W. Wu, B. Fu, H. Uhlirova, A. Devor, D. A. Boas, S. Sakadžić. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. Biomed. Opt. Express, 8, 2368-2385(2017).

    Jing Zhou, Tianxiang Wu, Runze Chen, Liang Zhu, Hequn Zhang, Yifei Li, Liying Chen, Jun Qian. Self-confocal NIR-II fluorescence microscopy for multifunctional in vivo imaging[J]. Journal of Innovative Optical Health Sciences, 2024, 17(1): 2350025
    Download Citation