• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 5, 569 (2021)
Xiao-Le MA1, Jie GUO1、*, Rui-Ting HAO1, Guo-Shuai WEI1, Guo-Wei WANG2、3, Ying-Qiang XU2、3, and Zhi-Chuan NIU2、3
Author Affiliations
  • 1Yunnan Key Laboratory of Opto-Electronic Information Technology,Yunnan Normal University,Kunming 650500,China
  • 2State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 3Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.05.001 Cite this Article
    Xiao-Le MA, Jie GUO, Rui-Ting HAO, Guo-Shuai WEI, Guo-Wei WANG, Ying-Qiang XU, Zhi-Chuan NIU. Mid-/Short-Wave dual-band infrared detector based on InAs/GaSb superlattice /GaSb bulk materials[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 569 Copy Citation Text show less
    References

    [1] Y BAI, L ZHAO, D Ju et al. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Optics Express, 23(2015).

    [2] M KOPYTKO, W GAWRON, A KĘBŁOWSKI et al. Numerical analysis of HgCdTe dual-band infrared detector. Optical and Quantum Electronics, 51(2019).

    [3] X TANG, M M ACKERMAN, M CHEN et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nature Photonics, 13, 277-282(2019).

    [4] D MO, S CHEN, L CHEN et al. Similarity criteria of target thermal radiation characteristics and their application to infrared radiation of jet engine exhaust system. International Journal of Thermal Sciences, 125(2018).

    [5] D WILLIAMS. Infrared Radiation. The Physics Teacher, 212(1963).

    [6] N MAINZER, E LAKIN, E ZOLOTOYABKO. Point-defect influence on 1/f noise in HgCdTe photodiodes. Applied Physics Letters, 81, 763-765(2002).

    [7] R NOKHWAL, R S SAXENA, B L S A et al. Study of dislocations in HgCdTe epilayers at (1 1 1)B and (1 1 0) surfaces using modified defect etchant. Infrared Physics & Technology, 378-383(2015).

    [8] N G KALUGIN, L JING, W BAO et al. Graphene-based quantum Hall effect infrared photodetector operating at liquid Nitrogen temperatures. Applied Physics Letters, 99(2011).

    [9] A ROGALSKI. New material systems for third generation infrared photodetectors. Opto-Electronics Review, 16, 458-482(2008).

    [10] C-C TANG, K IKUSHIMA, D C LING et al. Quantum Hall Dual-Band Infrared Photodetector. Physical Review Applied, 8(2017).

    [11] A HADDADI, R CHEVALLIER, A DEHZANGI et al. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier. Applied Physics Letters, 110(2017).

    [12] A M HOANG, A DEHZANGI, S ADHIKARY et al. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices. Sci Rep, 6, 24144(2016).

    [13] Yanqiu LV, Zhenyu PENG, Xiancun CAO et al. 320×256 mid-/short-wavelength dual-color infrared detector based on InAs/GaSb superlattice. Infrared and Laser Engineering, 1, 72-76(2020).

    [14] Xubo ZHU, Zhenyu PENG, Xiancun CAO et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice. Infrared and Laser Engineering, 48, 102-107(2019).

    [15] D CHAUHAN, A G U PERERA, L H LI et al. Effect of a current blocking barrier on a 2–6 µm p-GaAs/AlGaAs heterojunction infrared detector. Applied Physics Letters, 108(2016).

    [16] A P CRAIG, M JAIN, G WICKS et al. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb. Applied Physics Letters, 106(2015).

    [17] W HOWARD. YOON M C D, GEORGE P. Eppeldauer. Performance Comparisons of InGaAs, extended InGaAs,and Short-wave HgCdTe Detectors between 1 µm and 2.5 µm. The International Society For Optical Engineering, 6297(2006).

    [18] S ABROUG, F SAADALLAH, N YACOUBI. Photothermal investigations of doping effects on opto-thermal properties of bulk GaSb. Journal of Alloys and Compounds, 484(2009).

    [19] R PINO, Y KO, P S DUTTA. Enhancement of infrared transmission in GaSb bulk crystals by carrier compensation. Journal of Applied Physics, 96, 1064-1067(2004).

    [20] E Papis-Polakowska, J. Kaniewski, J. Szade et al. Passivation studies of GaSb-based superlattice structures. Thin Solid Films, 567(2014).

    [21] E PLIS, A KHOSHAKHLAGH, S MYERS et al. Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation. Applied Physics Letters, 96(2010).

    [22] A GIN, Y WEI, J BAE et al. Passivation of type II InAs/GaSb superlattice photodiodes. Thin Solid Films, 447-448, 489-492(2004).

    [23] G J LIU, B FRUHBERGER, I K SCHULLER et al. Quantitative structural characterization of InAs∕GaSb superlattices. Journal of Applied Physics, 100(2006).

    [24] X B ZHANG, J H RYOU, R D DUPUIS et al. Improved surface and structural properties of InAs∕GaSb superlattices on (001) GaSb substrate by introducing an InAsSb layer at interfaces. Applied Physics Letters, 90(2007).

    Xiao-Le MA, Jie GUO, Rui-Ting HAO, Guo-Shuai WEI, Guo-Wei WANG, Ying-Qiang XU, Zhi-Chuan NIU. Mid-/Short-Wave dual-band infrared detector based on InAs/GaSb superlattice /GaSb bulk materials[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 569
    Download Citation