• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111406 (2020)
Yucheng Bian1、2、**, Yulong Wang3, Yi Xiao4、***, Yinghui Zhang3, Yunlong Jiao3、*, Dong Wu3, Chenggang Zhou1、2, and Chengli Yao5
Author Affiliations
  • 1School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2Center for Micro-and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 4School of Mechanical Engineering, Nantong Vocational University, Nantong, Jiangsu 226007, China
  • 5School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230601, China
  • show less
    DOI: 10.3788/LOP57.111406 Cite this Article Set citation alerts
    Yucheng Bian, Yulong Wang, Yi Xiao, Yinghui Zhang, Yunlong Jiao, Dong Wu, Chenggang Zhou, Chengli Yao. Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111406 Copy Citation Text show less
    References

    [1] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 202, 1-8(1997).

    [2] Bohn H F, Federle W. Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 14138-14143(2004).

    [3] Autumn K. LiangY A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 405, 681-685(2000).

    [4] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 414, 33-34(2001).

    [5] Liu M J, Wang S T, Wei Z X et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 21, 665-669(2009).

    [6] Srinivasarao M. Nano-optics in the biological world: beetles, butterflies, birds, and moths[J]. Chemical Reviews, 99, 1935-1962(1999).

    [7] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 3, 178-182(2007).

    [8] Zhang M Q, Feng S L, Wang L et al. Lotus effect in wetting and self-cleaning[J]. Biotribology, 5, 31-43(2016).

    [9] Ma Q L, Cheng H F, Fane A G et al. Recent development of advanced materials with special wettability for selective oil/water separation[J]. Small, 12, 2186-2202(2016).

    [10] Zhang S N, Huang J Y, Cheng Y et al. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: concept, mechanism, and design[J]. Small, 13, 1701867(2017).

    [11] Zhang S N, Huang J Y, Chen Z et al. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications[J]. Small, 13, 1602992(2017).

    [12] Shiu J Y, Kuo C W, Chen P L et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J]. Chemistry of Materials, 16, 561-564(2004).

    [13] Shirtcliffe N J. McHale G, Newton M I, et al. Intrinsically superhydrophobic organosilica sol-gel foams[J]. Langmuir, 19, 5626-5631(2003).

    [14] Fiorilli S, Rivolo P, Descrovi E et al. Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates[J]. Journal of Colloid and Interface Science, 321, 235-241(2008).

    [15] Darmanin T, Nicolas M, Guittard F. Electrodeposited polymer films with both superhydrophobicity and superoleophilicity[J]. Physical Chemistry Chemical Physics, 10, 4322-4326(2008).

    [16] Guo C W, Feng L, Zhai J et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer[J]. ChemPhysChem, 5, 750-753(2004).

    [17] Love J C, Gates B D, Wolfe D B et al. Fabrication and wetting properties of metallic half-shells with submicron diameters[J]. Nano Letters, 2, 891-894(2002).

    [18] Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 138, 1727-1748(2016).

    [19] Li S H, Huang J Y, Chen Z et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 5, 31-55(2017).

    [20] Jeevahan J, Chandrasekaran M, Britto Joseph G et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 15, 231-250(2018).

    [21] Bonse J, Baudach S, Krüger J et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 74, 19-25(2002).

    [22] Venkatakrishnan K, Tan B. Ngoi B K A. Femtosecond pulsed laser ablation of thin gold film[J]. Optics & Laser Technology, 34, 199-202(2002).

    [23] Vorobyev A Y, Guo C L. Femtosecond laser structuring of titanium implants[J]. Applied Surface Science, 253, 7272-7280(2007).

    [24] Womack M, Vendan M, Molian P. Femtosecond pulsed laser ablation and deposition of thin films of polytetrafluoroethylene[J]. Applied Surface Science, 221, 99-109(2004).

    [25] Yong J, Chen F, Huo J et al. Green, biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation[J]. ACS Omega, 3, 1395-1402(2018).

    [26] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [27] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).

    [28] Juodkazis S, Watanabe M et al. Femtosecond laser-assisted three-dimensional microfabrication in silica[J]. Optics Letters, 26, 277-279(2001).

    [29] Martinez A, Dubov M, Khrushchev I et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 40, 1170-1172(2004).

    [30] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015).

    [31] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 5, 1219-1253(2014).

    [32] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).

    [33] Yong J L, Chen F, Yang Q et al. Hall of fame article: a review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 5, 1870033(2018).

    [34] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

    [35] Feng L, Li S, Li Y et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 14, 1857-1860(2002).

    [36] Adam N[2020-03-18]. The physics and chemistry of surfaces [2020-03-18].https:∥www.researchgate.net/publication/268944813_The_Physics_and_Chemistry_of_Surfaces..

    [37] Vogler E A. Structure and reactivity of water at biomaterial surfaces[J]. Advances in Colloid and Interface Science, 74, 69-117(1998).

    [38] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).

    [39] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).

    [40] Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 385-389(2005).

    [41] Wang Z K, Zheng H Y, Lim C P et al. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation[J]. Applied Physics Letters, 95, 111110(2009).

    [42] Neinhuis C. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 79, 667-677(1997).

    [43] Zhang X, Shi F, Niu J et al. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 18, 621-633(2008).

    [44] Wang S T, Liu K S, Yao X et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 115, 8230-8293(2015).

    [45] Yong J L, Chen F, Li M J et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 5, 25249-25257(2017).

    [46] Bauer U, Federle W. The insect-trapping rim of Nepenthes pitchers[J]. Plant Signaling & Behavior, 4, 1019-1023(2009).

    [47] Bauer U, Bohn H F, Federle W. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar[J]. Proceedings of the Royal Society B: Biological Sciences, 275, 259-265(2008).

    [48] Wong T S, Kang S H. Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 477, 443-447(2011).

    [49] Manna U. LynnD M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces[J]. Advanced Materials, 27, 3007-3012(2015).

    [50] Yong J L, Chen F, Yang Q et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).

    [51] Yang J J. Femtosecond laser "cold" micro-machining and its advanced applications(I)[J]. Laser & Optoelectronics Progress, 41, 39-47(2004).

    [52] Shirk M D, Molian P A. A review of ultrashort pulsed laser ablation of materials[J]. Journal of Laser Applications, 10, 18-28(1998).

    [53] Nedialkov N N, Atanasov P A, Amoruso S et al. Laser ablation of metals by femtosecond pulses: theoretical and experimental study[J]. Applied Surface Science, 253, 7761-7766(2007).

    [54] Povarnitsyn M E, Itina T E, Sentis M et al. Material decomposition mechanisms in femtosecond laser interactions with metals[J]. Physical Review B, 75, 235414(2007).

    [55] Shinonaga T, Tsukamoto M, Kawa T et al. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium[J]. Applied Physics B, 119, 493-496(2015).

    [56] Qiao H Z, Wang F, Zhang N et al. Femtosecond laser fabrication of two-dimensional periodic composite structures on tungsten surface[J]. Chinese Journal of Lasers, 44, 0102010(2017).

    [57] Han Y H, Qu S L. The ripples and nanoparticles on silicon irradiated by femtosecond laser[J]. Chemical Physics Letters, 495, 241-244(2010).

    [58] Liu J K, Jia X, Wu W S et al. Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse[J]. Optics Express, 26, 6302-6315(2018).

    [59] ReifJ, CostacheF, HenykM, et al., 2002, 197/198: 891- 895.

    [60] Müller F, Kunz C, Gräf S. Bio-inspired functional surfaces based on laser-induced periodic surface structures[J]. Materials, 9, 476(2016).

    [61] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).

    [62] Sakabe S, Hashida M, Tokita S et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review B, 79, 033409(2009).

    [63] Huang M, Cheng Y, Zhao F L et al. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale[J]. Annalen Der Physik, 525, 74-86(2013).

    [64] Jia T Q, Chen H X, Huang M et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses[J]. Physical Review B, 72, 125429(2005).

    [65] Florian C, Skoulas E, Puerto D et al. Controlling the wettability of steel surfaces processed with femtosecond laser pulses[J]. ACS Applied Materials & Interfaces, 10, 36564-36571(2018).

    [66] Yin K, Chu D K, Dong X R et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 9, 14229-14235(2017).

    [67] Sun T L, Wang G J, Feng L et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 43, 357-360(2004).

    [68] Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 19, 1249-1253(2003).

    [69] Onda T, Shibuichi S, Satoh N et al. Super-water-repellent fractal surfaces[J]. Langmuir, 12, 2125-2127(1996).

    [70] Yong J L, Chen F, Yang Q et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 51, 9813-9816(2015).

    [71] Lu J L, Ngo C V, Singh S C et al. Bioinspired hierarchical surfaces fabricated by femtosecond laser and hydrothermal method for water harvesting[J]. Langmuir, 35, 3562-3567(2019).

    [72] Yang G. Laser ablation in liquids: applications in the synthesis of nanocrystals[J]. Progress in Materials Science, 52, 648-698(2007).

    [73] Shen M Y, Crouch C H, Carey J E et al. Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Applied Physics Letters, 85, 5694-5696(2004).

    [74] Li G Q, Zhang Z, Wu P C et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 6, 37463-37471(2016).

    [75] Jiang H B, Liu Y Q, Zhang Y L et al. Reed leaf-inspired graphene films with anisotropic superhydrophobicity[J]. ACS Applied Materials & Interfaces, 10, 18416-18425(2018).

    [76] Yao J, Wang J N, Yu Y H et al. Biomimetic fabrication and characterization of an artificial rice leaf surface with anisotropic wetting[J]. Chinese Science Bulletin, 57, 2631-2634(2012).

    [77] Chen H W, Zhang P F, Zhang L W et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 532, 85-89(2016).

    [78] Hancock M J, Sekeroglu K, Demirel M C. Bioinspired directional surfaces for adhesion, wetting, and transport[J]. Advanced Functional Materials, 22, 2223-2234(2012).

    [79] Xia D Y, Johnson L M, López G P. Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications[J]. Advanced Materials, 24, 1287-1302(2012).

    [80] Liu Y, Wang X W, Fei B et al. Bioinspired, stimuli-responsive, multifunctional superhydrophobic surface with directional wetting, adhesion, and transport of water[J]. Advanced Functional Materials, 25, 5047-5056(2015).

    [81] Vorobyev A Y, Guo C L. Water sprints uphill on glass[J]. Journal of Applied Physics, 108, 123512(2010).

    [82] Yong J L, Yang Q, Chen F et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014).

    [83] Lu Y, Yu L D, Zhang Z et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Advances, 7, 11170-11179(2017).

    [84] Long J Y, Fan P X, Jiang D F et al. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures[J]. Advanced Materials Interfaces, 3, 1600641(2016).

    [85] Fang Y, Yong J, Chen F et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 5, 1701245(2018).

    [86] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [87] Li G Q, Fan H, Ren F F et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 4, 18832-18840(2016).

    [88] Ren F F, Li G Q, Zhang Z et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 5, 18403-18408(2017).

    [89] Zhang Z, Zhang Y H, Fan H et al. A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage[J]. Nanoscale, 9, 15796-15803(2017).

    [90] Yong J L, Huo J L, Yang Q et al. Porous network microstructures: femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 5, 1870029(2018).

    [91] Zhang Y C, Li Y, Hu Y L et al. Localized self-growth of reconfigurable architectures induced by a femtosecond laser on a shape-memory polymer[J]. Advanced Materials, 30, 1803072(2018).

    [92] Vandenbrink J P, Brown E A, Harmer S L et al. Turning heads: the biology of solar tracking in sunflower[J]. Plant Science, 224, 20-26(2014).

    [93] Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials, 23, 719-734(2011).

    [94] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 92, 041914(2008).

    [95] Vorobyev A Y, Guo C L. Femtosecond laser blackening of platinum[J]. Journal of Applied Physics, 104, 053516(2008).

    [96] Vorobyev A Y, Makin V S, Guo C L. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources[J]. Physical Review Letters, 102, 234301(2009).

    [97] Vorobyev A Y, Guo C L. Direct creation of black silicon using femtosecond laser pulses[J]. Applied Surface Science, 257, 7291-7294(2011).

    [98] Vorobyev A Y, Guo C L. Reflection of femtosecond laser light in multipulse ablation of metals[J]. Journal of Applied Physics, 110, 043102(2011).

    [99] Vorobyev A Y, Guo C L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. Journal of Applied Physics, 103, 043513(2008).

    [100] Anatoliy Y, Guo C L. Metal colorization with femtosecond laser pulses[J]. Proceedings of SPIE, 7005, 70051T(2008).

    [101] Dusser B, Sagan Z, Soder H et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Optics Express, 18, 2913-2924(2010).

    [102] Li G Q, Li J W, Hu Y L et al. Femtosecond laser color marking stainless steel surface with different wavelengths[J]. Applied Physics A, 118, 1189-1196(2015).

    [103] Li G Q, Li J W, Hu Y L et al. Realization of diverse displays for multiple color patterns on metal surfaces[J]. Applied Surface Science, 316, 451-455(2014).

    [104] Yin K, Du H F, Luo Z et al. Multifunctional micro/nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser[J]. Surface and Coatings Technology, 345, 53-60(2018).

    [105] Yong J L, Fang Y, Chen F et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 389, 1148-1155(2016).

    [106] Yu Z W, Yun F F, Wang Y Q et al. Desert beetle-inspired superwettable patterned surfaces for water harvesting[J]. Small, 13, 1701403(2017).

    [107] Kostal E, Stroj S, Kasemann S et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers[J]. Langmuir, 34, 2933-2941(2018).

    [108] Yin K, Yang S, Dong X R et al. Ultrafast achievement of a superhydrophilic/hydrophobic Janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J]. ACS Applied Materials & Interfaces, 10, 31433-31440(2018).

    [109] Yong J L, Chen F, Fang Y et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 9, 39863-39871(2017).

    [110] Yu C M, Zhu X B, Li K et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 27, 1701605(2017).

    [111] Jiao Y L, Lv X, Zhang Y Y et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 11, 1370-1378(2019).

    [112] Li G Q, Lu Y, Wu P C et al. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation[J]. Journal of Materials Chemistry A, 3, 18675-18683(2015).

    [113] Huo J L, Yang Q, Chen F et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 33, 3659-3665(2017).

    [114] Yong J L, Yang Q, Chen F et al. Superoleophobic surfaces: reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2, 1400388(2015).

    [115] Yang X L, Choi W T, Liu J Y et al. Droplet mechanical hand based on anisotropic water adhesion of hydrophobic-superhydrophobic patterned surfaces[J]. Langmuir, 35, 935-942(2019).

    [116] Jiao Y L, Li C Z, Lv X et al. In situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 6, 20878-20886(2018).

    [117] Jiang S J, Hu Y L, Wu H et al. Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration[J]. Advanced Materials, 31, 1807507(2019).

    Yucheng Bian, Yulong Wang, Yi Xiao, Yinghui Zhang, Yunlong Jiao, Dong Wu, Chenggang Zhou, Chengli Yao. Controllable Micro/Nano Structure Surface Fabricated by Femtosecond Laser and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111406
    Download Citation