• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207010 (2018)
Li Hui1、*, Xia Xianyuan1, Chen Tingai1, Yu Jia1, Li Xi2, and Zheng Wei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207010 Cite this Article Set citation alerts
    Li Hui, Xia Xianyuan, Chen Tingai, Yu Jia, Li Xi, Zheng Wei. Applications of Two-Photon Excitation Fluorescence Lifetime Imaging in Tumor Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 207010 Copy Citation Text show less
    References

    [1] Ntziachristos V. Going deeper than microscopy: The optical imaging frontier in biology[J]. Nature Methods, 7, 603-614(2010). http://europepmc.org/abstract/med/20676081

    [2] Nienhaus K, Nienhaus G U. Where do we stand with super-resolution optical microscopy?[J]. Journal of Molecular Biology, 428, 308-322(2016). http://europepmc.org/abstract/MED/26743847

    [3] Zhang X X. Imaging technology in modern microsystems[J]. Optical Instruments, 37, 550-560(2015).

    [4] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990). http://www.biomedcentral.com/pubmed/2321027

    [5] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005). http://www.nature.com/nmeth/journal/v2/n12/abs/nmeth818.html

    [6] Pittet M J, Weissleder R. Intravital imaging[J]. Cell, 147, 983-991(2011).

    [7] Zipfel W R, Williams R M, Christie R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation[J]. Proceedings of the National Academy of Sciences, 100, 7075-7080(2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000006000002000101000001&idtype=cvips&gifs=Yes

    [8] Wang B G, König K, Halbhuber K J. Two-photon microscopy of deep intravital tissues and its merits in clinical research[J]. Journal of Microscopy, 238, 1-20(2010). http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2009.03330.x/full

    [9] Kantere D, Guldbrand S, Paoli J. et al. Anti-stokes fluorescence from endogenously formed protoporphyrin IX—implications for clinical multiphoton diagnostics[J]. Journal of Biophotonics, 6, 409-415(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3732385/

    [10] Berezin M Y, Achilefu S. Fluorescence lifetime measurements and biological imaging[J]. Chemical Reviews, 110, 2641-2684(2010). http://europepmc.org/articles/PMC2924670/

    [11] Marcu L. Fluorescence lifetime techniques in medical applications[J]. Annals of Biomedical Engineering, 40, 304-331(2012). http://www.ncbi.nlm.nih.gov/pubmed/22273730

    [12] Chorvat D, Chorvatova A. Multi-wavelength fluorescence lifetime spectroscopy: A new approach to the study of endogenous fluorescence in living cells and tissues[J]. Laser Physics Letters, 6, 175-193(2009). http://onlinelibrary.wiley.com/doi/10.1002/lapl.200810132/full

    [13] Becker W, Bergmann A[M]. Handbook of biomedical nonlinear optical microscopy, 499-556(2008).

    [14] Lakowicz J R. Principles of fluorescence spectroscopy[M]. 3rd ed. New York: Springer(2006).

    [15] König K. Clinical multiphoton tomography[J]. Journal of Biophotonics, 1, 13-23(2008).

    [16] Seah L K, Wang P, Murukeshan V M. et al. Application of fluorescence lifetime imaging (FLIM) in latent finger mark detection[J]. Forensic Science International, 160, 109-114(2006). http://www.sciencedirect.com/science/article/pii/S0379073805004676

    [17] Pan W, Qu J, Chen T. et al. FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death[J]. European Biophysics Journal, 38, 447-456(2009). http://www.ncbi.nlm.nih.gov/pubmed/19132366

    [18] Fan S, Peng X, Liu L. et al. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging[C]. SPIE, 8948, 89482E(2014).

    [20] Pliss A, Peng X, Liu L. et al. Single cell assay for molecular diagnostics and medicine: Monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging[J]. Theranostics, 5, 919-930(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4493531/

    [21] Niesner R, Gericke K H. Fluorescence lifetime imaging in biosciences: Technologies and applications[J]. Frontiers of Physics in China, 3, 88-104(2008). http://link.springer.com/article/10.1007/s11467-008-0002-6

    [22] Becker W. Advanced time-correlated single-photon counting techniques[M]. Berlin: Springer(2005).

    [23] Teh S K, Zheng W, Li S. et al. Multimodal nonlinear optical microscopy improves the accuracy of early diagnosis of squamous intraepithelial neoplasia[J]. Journal of Biomedical Optics, 18, 036001(2013). http://www.ncbi.nlm.nih.gov/pubmed/23455959

    [24] Koppenol W H, Bounds P L, Dang C V. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nature Reviews Cancer, 11, 325-337(2011). http://www.nature.com/nrc/journal/v11/n8/index.html

    [25] Wu Y, Zheng W, Qu J Y. Sensing cell metabolism by time-resolved autofluorescence[J]. Optics Letters, 31, 3122-3124(2006). http://www.ncbi.nlm.nih.gov/pubmed/17041655/

    [26] Bird D K, Yan L, Vrotsos K M. et al. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH[J]. Cancer Research, 65, 8766-8773(2005). http://europepmc.org/abstract/MED/16204046

    [27] Chance B, Schoener B, Oshino R. et al. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals[J]. Journal of Biological Chemistry, 254, 4764-4771(1979). http://europepmc.org/abstract/MED/220260

    [28] Chance B, Cohen P, Jobsis F. et al. Intracellular oxidation-reduction states in vivo[J]. Science, 137, 499-508(1962).

    [29] Galeotti T, Mayer D H et al. On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues[J]. European Journal of Biochemistry, 17, 485-496(1970). http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1970.tb01191.x/full

    [30] Lakowicz J R, Szmacinski H, Nowaczyk K. et al. Fluorescence lifetime imaging of free and protein-bound NADH[J]. Proceedings of the National Academy of Sciences, 89, 1271-1275(1992). http://europepmc.org/abstract/MED/1741380

    [31] Colditz M J, Leyen K, Jeffree R L. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: Theoretical, biochemical and practical aspects[J]. Journal of Clinical Neuroscience, 19, 1611-1616(2012).

    [32] Kantelhardt S R, Leppert J, Krajewski J. et al. Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo[J]. Neuro-Oncology, 9, 103-112(2007). http://pubmedcentralcanada.ca/pmcc/articles/PMC1871673/

    [33] Skala M C, Riching K M, Gendron-Fitzpatrick A. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 19494-19499(2007). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2148317/

    [34] Leppert J, Krajewski J, Kantelhardt S R. et al. Multiphoton excitation of autofluorescence for microscopy of glioma tissue[J]. Neurosurgery, 58, 759-767(2006). http://europepmc.org/abstract/MED/16575340

    [35] Provenzano P P, Rueden C T, Trier S M. et al. Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer[J]. Journal of Biomed Optics, 13, 031220(2008). http://europepmc.org/abstract/MED/18601544

    [36] Russell J A, Diamond K R, Collins T J. et al. Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single- and two-photon excitation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 158-166(2008). http://ieeexplore.ieee.org/document/4451132/

    [37] Kantelhardt S R, Diddens H, Leppert J. et al. Multiphoton excitation fluorescence microscopy of 5-aminolevulinic acid induced fluorescence in experimental gliomas[J]. Lasers in Surgery and Medicine, 40, 273-281(2008). http://onlinelibrary.wiley.com/doi/10.1002/lsm.20623/pdf

    [38] Zhang S X. An atlas of histology[M]. New York: Springer-Verlag New York(1999).

    [39] Chen W, Zheng R, Baade P D. et al. Cancer statistics in China, 2015[J]. CA: A Cancer Journal for Clinicians, 66, 115-132(2016). http://onlinelibrary.wiley.com/doi/10.3322/caac.21338/pdf

    [40] Torre L A, Bray F, Siegel R L. et al. Global cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 65, 87-108(2015).

    [41] Rück A, Hauser C, Mosch S. et al. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells[J]. Journal of Biomedical Optics, 19, 96005(2014). http://www.ncbi.nlm.nih.gov/pubmed/25202900?dopt=Abstract

    [42] Skala M C, Riching K M, Bird D K. et al. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia[J]. Journal of Biomedical Optics, 12, 024014(2007). http://europepmc.org/articles/PMC2743958

    [43] Shen Y F, Tsai M R, Chen S C. et al. Imaging endogenous bilirubins with two-photon fluorescence of bilirubin dimers[J]. Analytical Chemistry, 87, 7575-7582(2015). http://europepmc.org/abstract/MED/26146882

    [44] Lakner P H, Monaghan M G, Moller Y. et al. Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models[J]. Scientific Reports, 7, 42730(2017). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304149/

    [45] Adur J, Pelegati V B, Bianchi Met al. Multimodal nonlinear optical microscopy used to discriminate human colon cancer[C]. 8588: UNSP 85881[J](2013).

    [46] Li X, Li H, He X et al. Spectrum- and time-resolved endogenous multiphoton signals reveal quantitative differentiation of premalignant and malignant gastric mucosa[J]. Biomedical Optics Express, 9, 453-471(2018). http://8.18.37.105/boe/abstract.cfm?uri=boe-9-2-453

    [47] Bekelis K, Valdés P A, Erkmen K. et al. Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas[J]. Neurosurgical Focus, 30, E8(2011). http://europepmc.org/articles/pmc3116440/

    [48] Barone D G, Lawrie T A. 1(1): CD009685[J]. Hart M G. Image guided surgery for the resection of brain tumours. Cochrane Database of Systematic Reviews(2014).

    [49] Kantelhardt S R, Kalasauskas D, Konig K. et al. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue[J]. Journal of Neuro-Oncology, 127, 473-482(2016). http://www.ncbi.nlm.nih.gov/pubmed/26830089

    [50] Zanello M, Poulon F, Varlet P. et al. Multimodal optical analysis of meningioma and comparison with histopathology[J]. Journal of Biophotonics, 10, 253-263(2017). http://www.ncbi.nlm.nih.gov/pubmed/26871683

    [51] Stewart B W, Wild C P[M]. World cancer report 2014(2015).

    [52] American cancer society. Cancer facts & figures 2017[M]. Atlanta: American Cancer Society(2017).

    [53] Mohan S V. Chang A L S. Advanced basal cell carcinoma: Epidemiology and therapeutic innovations[J]. Current Dermatology Reports, 3, 40-45(2014). http://link.springer.com/article/10.1007/s13671-014-0069-y

    [54] Pastore M N, Studier H, Bonder C S. et al. Non-invasive metabolic imaging of melanoma progression[J]. Experimental Dermatology, 26, 607-614(2017). http://onlinelibrary.wiley.com/doi/10.1111/exd.13274/full

    [55] Seidenari S, Arginelli F, Dunsby C. et al. Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: Morphologic features for non-invasive diagnostics[J]. Experimental Dermatology, 21, 831-836(2012). http://www.ncbi.nlm.nih.gov/pubmed/22882324/

    [56] Dimitrow E, Riemann I, Ehlers A. et al. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis[J]. Experimental Dermatology, 18, 509-515(2009). http://www.ncbi.nlm.nih.gov/pubmed/19243426

    [57] Dancik Y, Favre A, Loy C J. et al. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo[J]. Journal of Biomedical Optics, 18, 26022(2013). http://europepmc.org/abstract/MED/23412342

    [58] Cicchi R. Sestini S, de Giorgi V, et al. Multidimensional two-photon imaging of diseased skin[C]. SPIE, 6859, 85903(2008).

    [59] Riemann I. Ehlers A, le Harzic R, et al. Non-invasive analysis/diagnosis of human normal and melanoma skin tissues with two-photon FLIM in vivo[C]. SPIE, 6842, 684205(2008).

    [60] Patalay R, Talbot C, Alexandrov Y. et al. Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas[J]. Plos One, 7, e43460(2012). http://europepmc.org/articles/PMC3439453

    [61] Patalay R, Talbot C, Alexandrov Y. et al. Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels[J]. Biomedical Optics Express, 2, 3295-3308(2011). http://europepmc.org/articles/PMC3233249/

    [62] Cicchi R. Sestini S, de Giorgi V, et al. Time-resolved multiphoton imaging of basal cell carcinoma[C]. SPIE, 6442, 64421I(2007).

    [63] de Giorgi V, Massi D, Sestini S et al. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: First experiences[J]. Journal of the European Academy of Dermatology and Venereology, 23, 314-316(2009).

    [64] Patalay R, Talbot C, Alexandrov Yet al. Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography[C]. 8087: UNSP808718(2011).

    [65] Roberts M S, Dancik Y, Prow T W. et al. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy[J]. European Journal of Pharmaceutics and Biopharmaceutics, 77, 469-488(2011). http://www.sciencedirect.com/science/article/pii/S0939641110003644

    [66] König K, Ehlers A, Riemann I. et al. Clinical two-photon microendoscopy[J]. Microscopy Research and Technique, 70, 398-402(2007). http://www.biomedcentral.com/pubmed/17393493

    [67] Datta R, Heylman C, George S C. et al. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes[J]. Biomedical Optics Express, 7, 1690-1701(2016). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871074/

    CLP Journals

    [1] Wu Danlei, Feng Lishuang, Wang Aimin. Optical Design of Two-Photon Endoscopy Objective with High Collection Efficiency[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71801

    Li Hui, Xia Xianyuan, Chen Tingai, Yu Jia, Li Xi, Zheng Wei. Applications of Two-Photon Excitation Fluorescence Lifetime Imaging in Tumor Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 207010
    Download Citation