• Photonics Research
  • Vol. 8, Issue 9, 1448 (2020)
Hironaru Murakami*, Tomoya Takarada, and Masayoshi Tonouchi
Author Affiliations
  • Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-08771, Japan
  • show less
    DOI: 10.1364/PRJ.395517 Cite this Article Set citation alerts
    Hironaru Murakami, Tomoya Takarada, Masayoshi Tonouchi. Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands[J]. Photonics Research, 2020, 8(9): 1448 Copy Citation Text show less
    References

    [1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [2] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [3] J. B. Baxter, G. W. Guglietta. Terahertz spectroscopy. Anal. Chem., 83, 4342-4368(2004).

    [4] D. S. Rana, M. Tonouchi. Terahertz emission functionality of high-temperature superconductors and similar complex systems. Adv. Opt. Mater., 8(2019).

    [5] H. Murakami, S. Fujiwara, I. Kawayama, M. Tonouchi. Study of photoexcited-carrier dynamics in photoconductive switches using dynamic terahertz emission microscopy. Photon. Res., 4, A9-A15(2016).

    [6] K. Serita, E. Matsuda, K. Okada, H. Murakami, I. Kawayama, M. Tonouchi. Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photon., 3, 051603(2018).

    [7] H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, M. Tonouchi. Scanning laser THz imaging system. J. Phys. D, 47, 374007(2014).

    [8] M. Tani, K.-S. Lee, X.-C. Zhang. Detection of terahertz radiation with low-temperature-grown GaAs based photoconductive antenna using 1.55  μm probe. Appl. Phys. Lett., 77, 1396-1398(2000).

    [9] C. Zhang, L. Chai, Y. Song, M. Hu, C. Wang. Ultra-broadband optical spectrum generation from a stretched pulse fiber laser utilizing zero-dispersion fiber. Chin. Opt. Lett., 11, 051403(2013).

    [10] X.-C. Zhang, D. H. Auston. Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics. J. Appl. Phys., 71, 326-338(1992).

    [11] R. Kersting, K. Unterrainer, G. Strasser, H. F. Kauffmann, E. Gornik. Few-cycle THz emission from cold plasma oscillations. Phys. Rev. Lett., 79, 3038-3041(1997).

    [12] R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41  THz. Appl. Phys. Lett., 76, 3191-3193(2000).

    [13] M. Tonouchi. Simplified formulas for the generation of terahertz waves from semiconductor surfaces excited with a femtosecond laser. J. Appl. Phys., 127(2020).

    [14] H. Dember. Über eine photoelektronische Kraft in Kupferoxydul-Kristallen. Z. Phys., 32, 554-556(1931).

    [15] J. Hebling, G. Almási, I. Z. Kozma, J. Kuhl. Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Express, 10, 1161-1166(2002).

    [16] M. Kaminska, Z. L. Weber, E. R. Weber, T. George. Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures. Appl. Phys. Lett., 54, 1881-1883(1989).

    [17] S. Gupta, J. F. Whitaker, G. A. Mourou. Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE J. Quantum Electron., 28, 2464-2472(1992).

    [18] D. C. Look. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films, 231, 61-73(1993).

    [19] M. C. Beard, G. M. Turner, C. A. Schmuttenmaer. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. J. Appl. Phys., 90, 5915-5923(2001).

    [20] P. Pohl, F. H. Renner, M. Eckardt, A. Schwanhäußer, A. Friedrich, Ö. Yüksekdag, S. Malzer, G. H. Döhler. Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett., 83, 4035-4037(2003).

    [21] R. S. Adhav, S. R. Adhav, J. M. Pelaprat. BBO’s nonlinear optical phase-matching properties. Laser Focus, 23, 88-100(1987).

    [22] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, Y. Kadoya. Detection of terahertz waves using low-temperature-grow InGaAs with 1.56  μm pulse excitation. Appl. Phys. Lett., 90, 101119(2007).

    [23] M. Suzuki, M. Tonouchi. Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  μm femtosecond optical pulses. Appl. Phys. Lett., 86, 163504(2005).

    [24] H. Murakami, K. Mizui, M. Tonouchi. High-sensitivity photoconductive detectors with wide dipole electrodes for low frequency THz wave detection. J. Appl. Phys., 125, 151610(2019).

    [25] A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, R. Gordon. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection. Nano Lett., 15, 8306-8310(2015).

    [26] F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie, R. Gordon. Plasmonic antireflection coating for photoconductive terahertz generation. ACS Photon., 4, 1350-1354(2017).

    [27] O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, J. C. Balzer. TiN nanoparticles for enhanced THz generation in TDS systems. J. Infrared Millim. Terahertz Waves, 38, 1206-1214(2017).

    [28] S.-G. Park, K. H. Jin, M. Yi, J. C. L. Ye, J. Ahn, K.-H. Jeong. Enhancement of terahertz pulse emission by optical nanoantenna. ACS Nano, 6, 2026-2031(2012).

    [29] S.-G. Park, Y. Choi, Y.-J. Oh, K.-H. Jeong. Terahertz photoconductive antenna with metal nanoislands. Opt. Express, 20, 25530-25535(2012).

    [30] S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú, E. U. Rafailov. Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep., 8(2018).

    [31] N. T. Yardimci, M. Jarrahi. Nanostructure-enhanced photoconductive terahertz emission and detection. Small, 14, 1802437(2018).

    [32] M. Bashirpour, M. Forouzmehr, S. E. Hosseininejad, M. Kolahdouz, M. Neshat. Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods. Sci. Rep., 9(2019).

    [33] T. Siday, P. P. Vabishchevich, L. Hale, C. T. Harris, T. S. Luk, J. L. Reno, I. Brener, O. Mitrofanov. Terahertz detection with perfectly-absorbing photoconductive metasurface. Nano Lett., 19, 2888-2896(2019).

    [34] N. Wang, M. R. Hashemi, M. Jarrahi. Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity. Opt. Express, 21, 17221-17227(2013).

    [35] N. T. Yardimci, M. Jarrahi. High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays. Sci. Rep., 7, 42667(2017).

    [36] S. Cakmakyapan, P. K. Lu, A. Navabi, M. Jarrahi. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Sci. Appl., 7(2018).

    [37] C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun., 4(2013).

    [38] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668-677(2003).

    [39] N. T. Yardimci, H. Lu, M. Jarrahi. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Appl. Phys. Lett., 109, 191103(2016).

    [40] Y. Tian, T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 127, 7632-7637(2005).

    [41] S. Link, M. A. El-Sayed. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B, 103, 8410-8426(1999).

    [42] I. Romero, J. Aizpurua, G. W. Bryant, F. J. García de Abajo. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express, 14, 9988-9999(2006).

    [43] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, C. A. Mirkin. Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B, 110, 2150-2154(2006).

    [44] R. Gans. Über die form ultramikroskopischer goldteilchen. Ann. Phys., 342, 881-900(1912).

    [45] R. Gans. Über die Form ultramikroskopischer Silberteilchen. Ann. Phys., 352, 270-284(1915).

    [46] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377-445(1908).

    [47] C. A. Foss, G. L. Hornyak, M. J. Tierney, C. R. Martin. Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory. J. Phys. Chem., 96, 9001-9007(1992).

    [48] G. L. Hornyak, C. J. Patrissi, C. R. Martin. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J. Phys. Chem. B, 101, 1548-1555(1997).

    [49] S. Link, M. B. Mohamed, M. A. El-Sayed. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B, 103, 3073-3077(1999).

    [50] R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, M. B. Raschke. Optical dielectric function of gold. Phys. Rev. B, 86, 235147(2012).

    [51] G. A. Samara. Temperature and pressure dependence of the dielectric constants of semiconductors. Phys. Rev. B, 27, 3494-3505(1983).

    Hironaru Murakami, Tomoya Takarada, Masayoshi Tonouchi. Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands[J]. Photonics Research, 2020, 8(9): 1448
    Download Citation