• Journal of Advanced Dielectrics
  • Vol. 12, Issue 6, 2241003 (2022)
Hongbo Liu1 and Jianguo Chen2、*
Author Affiliations
  • 1School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
  • 2School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
  • show less
    DOI: 10.1142/S2010135X2241003X Cite this Article
    Hongbo Liu, Jianguo Chen. Effect of Li2CO3 addition on structural and electrical properties of 0.7 BiFeO3–0.3BaTiO3 piezoelectric ceramic[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241003 Copy Citation Text show less
    References

    [1] Z. Liu, H. Wu, Y. Yuan, H. Wan, Z. Luo, P. Gao, J. Zhuang, J. Zhang, N. Zhang, J. Li, Y. Zhan, W. Ren, Z.-G. Ye. Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications. Curr. Opin. Solid State Mater. Sci., 26, 101016(2022).

    [2] J. Hao, W. Li, J. Zhai, H. Chen. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R Rep., 135, 1(2019).

    [3] P. K. Panda, B. Sahoo, T. S. Thejas, M. Krishna. High d33 Lead-free piezoceramics: A review. J. Electron. Mater., 51, 938(2022).

    [4] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev., 4, 041305(2017).

    [5] H. Liu, Y.-X. Liu, A. Song, Q. Li, Y. Yin, F.-Z. Yao, K. Wang, W. Gong, B.-P. Zhang, J.-F. Li. (K, Na)NbO3-based lead-free piezoceramics: One more step to boost applications. Natl. Sci. Rev., 9, nwac101(2022).

    [6] W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel. Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective. J. Electroceramics, 29, 71(2012).

    [7] J. Rödel, J.-F. Li. Lead-free piezoceramics: Status and perspectives. MRS Bull., 576(2018).

    [8] D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I. M. Reaney. BiFeO3 -BaTiO3: A new generation of lead-free electroceramics. J. Adv. Dielectr., 8, 1830004(2018).

    [9] J. Chen, J. E. Daniels, J. Jian, Z. Cheng, J. Cheng, J. Wang, Q. Gu, S. Zhang. Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics. Acta Mater., 197, 1(2020).

    [10] G. Wang, Z. Fan, S. Murakami, Z. Lu, D. A. Hall, D. C. Sinclair, A. Feteira, X. Tan, J. L. Jones, A. K. Kleppe, D. Wang, I. M. Reaney. Origin of the large electrostrain in BiFeO 3-BaTiO3 based lead-free ceramics. J. Mater. Chem. A, 7, 21254(2019).

    [11] J. Chen, J. Cheng, J. Guo, Z. Cheng, J. Wang, H. Liu, S. Zhang. Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc., 103, 374(2020).

    [12] I. Calisir, A. K. Kleppe, A. Feteira, D. A. Hall. Quenching-assisted actuation mechanisms in core–shell structured BiFeO3–BaTiO3 piezoceramics. J. Mater. Chem. C, 7, 10218(2019).

    [13] S. J. McCartan, I. Calisir, G. W. Paterson, R. W. H. Webster, T. A. Macgregor, D. A. Hall, I. MacLaren. Correlative chemical and structural nanocharacterization of a pseudo-binary 0.75Bi(Fe0. 97Ti0. 03)O 3-0.25BaTiO3 ceramic. J. Am. Ceram. Soc., 104, 2388(2021).

    [14] S. O. Leontsev, R. E. Eitel. Dielectric and Piezoelectric Properties in Mn-Modified (1−x)BiFeO3–xBaTiO3 Ceramics. J. Am. Ceram. Soc., 92, 2957(2009).

    [15] J. Chen, B. Tong, J. Lin, X. Gao, J. Cheng, S. Zhang. Tailoring the chemical heterogeneity of Mn-modified 0.75BiFeO3-0.25BaTiO3 ceramics for piezoelectric sensor applications. J. Eur. Ceram. Soc., 42, 3857(2022).

    [16] X. Xie, Z. Zhou, R. Liang, X. Dong. Superior piezoelectricity in bismuth titanate-based lead-free high-temperature piezoceramics via domain engineering. Adv. Electron. Mater., 8, 2101266(2022).

    [17] S. Murakami, D. Wang, A. Mostaed, A. Khesro, A. Feteira, D. C. Sinclair, Z. Fan, X. Tan, I. M. Reaney. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc., 101, 5428(2018).

    [18] M. A. Qaiser, X.-Z. Ma, R. Ma, W. Ali, X. Xu, G. Yuan, L. Chen. High-temperature multilayer actuators based on CuO added BiScO3–PbTiO3 piezoceramics and Ag electrodes. J. Am. Ceram. Soc., 102, 5424(2019).

    [19] G. F. Fan, M. B. Shi, W. Z. Lu, Y. Q. Wang, F. Liang. Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics. J. Eur. Ceram. Soc., 34, 23(2014).

    [20] X.-Y. Tong, J.-J. Zhou, K. Wang, H. Liu, J.-Z. Fang. Low-temperature sintered Bi0. 5Na0. 5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J. Eur. Ceram. Soc., 37, 4617(2017).

    [21] S. Guan, H. Yang, Y. Zhao, R. Zhang. Effect of Li2CO3 addition in BiFeO3-BaTiO3 ceramics on the sintering temperature, electrical properties and phase transition. J. Alloys Compd., 735, 386(2018).

    [22] H. Yuan, L. Li, H. Hong, Z. Ying, X. Zheng, L. Zhang, F. Wen, Z. Xu, W. Wu, G. Wang. Low sintering temperature, large strain and reduced strain hysteresis of BiFeO3 –BaTiO3 ceramics for piezoelectric multilayer actuator applications. Ceram. Int., 47, 31349(2021).

    [23] S. Guan, H. Yang, G. Qiao, Y. Sun, F. Qin, H. Hou. Effects of Li2CO3 and CuO as composite sintering aids on the structure, piezoelectric properties, and temperature stability of BiFeO3-BaTiO3 Ceramics. J. Electron. Mater., 49, 6199(2020).

    [24] Y. Ren, H. Liu, F. Liu, G. Liu. Tuning of electric and magnetic properties of BiFeO3 -SrTiO3 solid solution ceramics by site-specific doping of Mn. J. Alloys Compd., 877, 160239(2021).

    [25] L. Hai, H. Liu. Effects of Mn doping on electrical properties of BiFeO3–SrTiO3 solid solution. Solid State Commun., 343, 114652(2022).

    [26] H. Liu, Y. Sun. Defect chemistry for Mn-doped and Nb-doped BiFeO3-based ceramics. J. Phys. Chem. Solids, 170, 110951(2022).

    [27] J. Chen, J. Cheng. High electric-induced strain and temperature-dependent piezoelectric properties of 0.75BF–0.25BZT lead-free ceramics. J. Am. Ceram. Soc., 99, 536(2016).

    [28] D. Fu, Z. Ning, D. Hu, J. Cheng, F. Wang, J. Chen. Large and temperature-insensitive piezoelectric strain in xBiFeO3–(1−x)Ba(Zr0. 05Ti0. 95)O3 lead-free piezoelectric ceramics. J. Mater. Sci., 54, 1153(2019).

    [29] Y. Kameshima, M. Irie, A. Yasumori, K. Okada. Low temperature synthesis of AlN by addition of various Li-salts. J. Eur. Ceram. Soc., 24, 3801(2004).

    [30] L. Li, N. Zhang, C. Bai, X. Chu, Z. Gui. Multilayer piezoelectric ceramic transformer with low temperature sintering. J. Mater. Sci., 41, 155(2006).

    [31] Y.-D. Hou, L.-M. Chang, M.-K. Zhu, X.-M. Song, H. Yan. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN–0.5PZT systems. J. Appl. Phys., 102, 084507(2007).

    Hongbo Liu, Jianguo Chen. Effect of Li2CO3 addition on structural and electrical properties of 0.7 BiFeO3–0.3BaTiO3 piezoelectric ceramic[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241003
    Download Citation