• Opto-Electronic Engineering
  • Vol. 44, Issue 10, 1014 (2017)
Lei Ni, Baorui Huang, and Peilin Li
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.10.010 Cite this Article
    Lei Ni, Baorui Huang, Peilin Li. Measurement of cryogenic thermal expansion coefficient and accuracy analysis[J]. Opto-Electronic Engineering, 2017, 44(10): 1014 Copy Citation Text show less
    References

    [1] Ni Lei, Ren Qifeng, Liao Sheng. Measurement of cryogenic refractive index of ir materials: uncertainty analysis[J]. Opto-Electronic Engineering, 2010, 37(10): 77-82.

    [2] Svensson S P, Sarney W L, Donetsky D, et al. Materials design parameters for infrared device applications based on III-V semiconductors[J]. Applied Optics, 2017, 56(3): B58–B63.

    [3] Ordu M, Guo J, Pack G N, et al. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared[J]. AIP Advances, 2017, 7(9): 095125.

    [4] Lin H, Chen H, Zheng Y J, et al. Two excellent phase-matchable infrared nonlinear optical materials based on 3D diamond-like frameworks: RbGaSn2Se6 and RbInSn2Se6[J]. Dalton Transactions, 2017, 46(24): 7714–7721.

    [5] Tang J Y, Xiao Z Y, Xu K K. Broadband ultrathin absorber and sensing application based on hybrid materials in infrared region[J]. Plasmonics, 2017, 12(4): 1091–1098.

    [6] Guo S P, Chi Y, Guo G C. Recent achievements on middle and far-infrared second-order nonlinear optical materials[J]. Coordination Chemistry Reviews, 2017, 355: 44–57.

    [7] Bureau B, Boussard-Plédel C, Troles J, et al. Development of optical fibers for mid-infrared sensing: state of the art and recent achievements[J]. Proceedings of SPIE, 2015, 9507: 950702.

    [8] Wang Y, Overvig A C, Shrestha S, et al. Tunability of indium tin oxide materials for mid-infrared plasmonics applications[J]. Optical Materials Express, 2017, 7(8): 2727–2739.

    [9] Pizetta D C, Mastelaro V R. Building a dilatometer and determining the coefficient of linear thermal expansion[J]. Revista Brasileira De Ensino De Física, 2014, 36: 1313.

    [10] Kumar V, Sastry B S R. Thermal expansion coefficient of binary semiconductors[J]. Crystal Research and Technology, 2015, 36(6): 565–569.

    [11] Miyazaki H, Ushiroda I, Itomura D, et al. Thermal expansion of NaZr2 (Po4)3 family ceramics in a low-temperature range[J]. Japanese Journal of Applied Physics, 2008, 47(9): 7262–7265.

    [12] Haung Yonghua, Wu Zhe, Li Xiaoci, et al. Development of simple thermal expansion coefficient measurement apparatus and its application to several materials[J]. CIESC Journal, 2016, 67(S2): 38–45.

    [13] Wu Qingren, Wen Bixuan. Studies on temperature dependence of thermal conductivity and linear expansion for SiC material[J]. Journal of South China University of Technology (Natural Science), 1996, 24(3): 11–15.

    [14] People's Republic of China General Administration of Quality Supervision, Inspection and Quarantine, China National Standardization Administration Committee. Test methods for thermal expansion characteristic parameters of metallic materials: GB/T 4339-2008[S]. Beijing: China Standard Press, 2009.

    Lei Ni, Baorui Huang, Peilin Li. Measurement of cryogenic thermal expansion coefficient and accuracy analysis[J]. Opto-Electronic Engineering, 2017, 44(10): 1014
    Download Citation