• Advanced Photonics
  • Vol. 5, Issue 5, 056006 (2023)
Sheng Zhang1、2、†, Yongwei Cui1、2、3, Shunjia Wang1、2, Haoran Chen1、2、3, Yaxin Liu1、2, Wentao Qin1、2、3, Tongyang Guan1、2, Chuanshan Tian1、2, Zhe Yuan4、5, Lei Zhou1、2, Yizheng Wu1、2、3、*, and Zhensheng Tao1、2、*
Author Affiliations
  • 1Fudan University, State Key Laboratory of Surface Physics, Department of Physics, Shanghai, China
  • 2Fudan University, Key Laboratory of Micro and Nano Photonic Structures, Shanghai, China
  • 3Shanghai Research Center for Quantum Sciences, Shanghai, China
  • 4Beijing Normal University, Center for Advanced Quantum Studies, Department of Physics, Beijing, China
  • 5Fudan University, Institute for Nanoelectronic Devices and Quantum Computing, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.5.5.056006 Cite this Article Set citation alerts
    Sheng Zhang, Yongwei Cui, Shunjia Wang, Haoran Chen, Yaxin Liu, Wentao Qin, Tongyang Guan, Chuanshan Tian, Zhe Yuan, Lei Zhou, Yizheng Wu, Zhensheng Tao. Nonrelativistic and nonmagnetic terahertz-wave generation via ultrafast current control in anisotropic conductive heterostructures[J]. Advanced Photonics, 2023, 5(5): 056006 Copy Citation Text show less
    References

    [1] A. Polman, H. A. Atwater. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater., 11, 174-177(2012).

    [2] Y. Tachibana, L. Vayssieres, J. R. Durrant. Artificial photosynthesis for solar water-splitting. Nat. Photonics, 6, 511-518(2012).

    [3] N. Han et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun., 4, 1452(2013).

    [4] T. Kampfrath et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol., 8, 256-260(2013).

    [5] A. Fognini et al. Laser-induced ultrafast spin current pulses: a thermodynamic approach. J. Phys. Condens. Matter, 29, 214002(2017).

    [6] E. Gruber et al. Ultrafast electronic response of graphene to a strong and localized electric field. Nat. Commun., 7, 13948(2016).

    [7] T. Seifert et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics, 10, 483-488(2016).

    [8] Y. Wu et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater., 29, 1603031(2017).

    [9] D. Yang et al. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Adv. Opt. Mater., 4, 1944-1949(2016).

    [10] S. Wang et al. Nanoengineered spintronic-metasurface terahertz emitters enable beam steering and full polarization control. Nano Lett., 22, 10111-10119(2022).

    [11] C. Liu et al. Active spintronic-metasurface terahertz emitters with tunable chirality. Adv. Photonics, 3, 056002(2021).

    [12] T. S. Seifert et al. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nat. Commun., 9, 2899(2018).

    [13] J. Kimling et al. Picosecond spin Seebeck effect. Phys. Rev. Lett., 118, 057201(2017).

    [14] B. C. Choi et al. Terahertz excitation of spin dynamics in ferromagnetic thin films incorporated in metallic spintronic-THz-emitter. Appl. Phys. Lett., 116, 132406(2020).

    [15] H. Qiu et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys., 17, 388-394(2021).

    [16] T. S. Seifert et al. Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20. J. Phys. D, 51, 364003(2018). https://doi.org/10.1088/1361-6463/aad536

    [17] M. B. Jungfleisch et al. Control of terahertz emission by ultrafast spin-charge current conversion at Rashba interfaces. Phys. Rev. Lett., 120, 207207(2018).

    [18] C. Zhou et al. Broadband terahertz generation via the interface inverse Rashba–Edelstein effect. Phys. Rev. Lett., 121, 086801(2018).

    [19] T. J. Huisman et al. Femtosecond control of electric currents in metallic ferromagnetic heterostructures. Nat. Nanotechnol., 11, 455-458(2016).

    [20] M. Battiato, K. Carva, P. M. Oppeneer. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett., 105, 027203(2010).

    [21] M. Battiato, K. Carva, P. M. Oppeneer. Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures. Phys. Rev. B, 86, 024404(2012).

    [22] M. Zhu, C. L. Dennis, R. D. McMichael. Temperature dependence of magnetization drift velocity and current polarization in Ni80Fe20 by spin-wave Doppler measurements. Phys. Rev. B, 81, 140407(R)(2010). https://doi.org/10.1103/PhysRevB.81.140407

    [23] R. J. Soulen et al. Measuring the spin polarization of a metal with a superconducting point contact. Science, 282, 85-88(1998).

    [24] X. Wu et al. Antiferromagnetic–ferromagnetic heterostructure-based field-free terahertz emitters. Adv. Mater., 34, 2204373(2022).

    [25] T. Berlijn et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett., 118, 077201(2017). https://doi.org/10.1103/PhysRevLett.118.077201

    [26] Z. H. Zhu et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett., 122, 017202(2019). https://doi.org/10.1103/PhysRevLett.122.017202

    [27] D. F. Shao et al. Spin-neutral currents for spintronics. Nat. Commun., 12, 7061(2021).

    [28] A. Bose et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron., 5, 267-274(2022).

    [29] Z. Feng et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron., 5, 735-743(2022).

    [30] R. González-Hernández et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett., 126, 127701(2021).

    [31] H. Bai et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett., 128, 197202(2022). https://doi.org/10.1103/PhysRevLett.128.197202

    [32] S. Karube et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett., 129, 137201(2022). https://doi.org/10.1103/PhysRevLett.129.137201

    [33] L. Šmejkal et al. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X, 12, 011028(2022).

    [34] Y. Ping, G. Galli, W. A. Goddard. Electronic structure of IrO2: the role of the metal d orbitals. J. Phys. Chem. C, 119, 11570-11577(2015). https://doi.org/10.1021/acs.jpcc.5b00861

    [35] K. L. Yeh et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett., 90, 171121(2007).

    [36] A. Rice et al. Terahertz optical rectification from 110 zinc-blende crystals. Appl. Phys. Lett., 64, 1324-1326(1994). https://doi.org/10.1063/1.111922

    [37] Y. He et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation. Appl. Phys. B, 124, 16(2018).

    [38] M. Knorr et al. Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate. Opt. Lett., 42, 4367-4370(2017).

    [39] S. Zhang et al. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light Sci. Appl., 10, 53(2021).

    [40] B. Zhu et al. Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management. Opt. Express, 30, 2918-2932(2022).

    [41] P. C. M. Planken et al. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B, 18, 313(2001).

    [42] Q. Wu, X. C. Zhang. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett., 67, 3523(1995).

    [43] A. Leitenstorfer et al. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett., 74, 1516-1518(1999).

    [44] D. S. Ko et al. Understanding the structural, electrical, and optical properties of monolayer h-phase RuO2 nanosheets: a combined experimental and computational study. NPG Asia Mater., 10, 266-276(2018). https://doi.org/10.1038/s41427-018-0020-y

    [45] E. Saitoh et al. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett., 88, 182509(2006).

    [46] S. O. Valenzuela, M. Tinkham. Direct electronic measurement of the spin Hall effect. Nature, 442, 176-179(2006).

    [47] K. S. Krishnan, N. Ganguli. Large anisotropy of the electrical conductivity of graphite. Nature, 144, 667(1939).

    [48] H. Salami, A. Poissant, R. A. Adomaitis. Anomalously high alumina atomic layer deposition growth per cycle during trimethylaluminum under-dosing conditions. J. Vac. Sci. Technol. A, 35, 01B101(2017).

    [49] M. Reinke, Y. Kuzminykh, P. Hoffmann. Low temperature chemical vapor deposition using atomic layer deposition chemistry. Chem. Mater., 27, 1604-1611(2015).

    [50] O. Gueckstock et al. Terahertz spin-to-charge conversion by interfacial skew scattering in metallic bilayers. Adv. Mater., 33, 2006281(2021).

    [51] O. Mosendz et al. Quantifying spin hall angles from spin pumping: experiments and theory. Phys. Rev. Lett., 104, 046601(2010).

    [52] Z. Lin, L. V. Zhigilei, V. Celli. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B, 77, 075133(2008).

    [53] E. Eser, H. Koç. Investigations of temperature dependences of electrical resistivity and specific heat capacity of metals. Phys. B, 492, 7-10(2016).

    [54] P. Tolias. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl. Mater. Energy, 13, 42-57(2017).

    [55] P. B. Johnson, R. W. Christry. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [56] W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data, 38, 1013-1092(2009).

    [57] J. R. Devore. Refractive indices of rutile and sphalerite. J. Opt. Soc. Am., 41, 416-419(1951).

    Sheng Zhang, Yongwei Cui, Shunjia Wang, Haoran Chen, Yaxin Liu, Wentao Qin, Tongyang Guan, Chuanshan Tian, Zhe Yuan, Lei Zhou, Yizheng Wu, Zhensheng Tao. Nonrelativistic and nonmagnetic terahertz-wave generation via ultrafast current control in anisotropic conductive heterostructures[J]. Advanced Photonics, 2023, 5(5): 056006
    Download Citation