• Laser & Optoelectronics Progress
  • Vol. 57, Issue 19, 191405 (2020)
Qi Qi1、*, Xinyuan Cao1、**, Mingsheng Chen1、***, Yi Liu2, Xiaojing Kuang1, and Xianliang Wu1
Author Affiliations
  • 1Anhui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei, Anhui 230061, China
  • 2School of Computer Science and Technology, Hefei Normal University, Hefei, Anhui 230061, China
  • show less
    DOI: 10.3788/LOP57.191405 Cite this Article Set citation alerts
    Qi Qi, Xinyuan Cao, Mingsheng Chen, Yi Liu, Xiaojing Kuang, Xianliang Wu. Fast Analysis of Electromagnetic Characteristics for Cavity Devices Based on Compressive Sensing[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191405 Copy Citation Text show less
    References

    [1] Hesthaven J S, Warburton T. Nodal high-order methods on unstructured grids[J]. Journal of Computational Physics, 181, 186-221(2002). http://www.sciencedirect.com/science/article/pii/S0021999102971184

    [2] Ren Q, Sun Q T, Tobón L et al. EB scheme-based hybrid SE-FE DGTD method for multiscale EM simulations[J]. IEEE Transactions on Antennas and Propagation, 64, 4088-4091(2016). http://ieeexplore.ieee.org/document/7487042

    [3] Fezoui L, Lanteri S, Lohrengel S et al. Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes[J]. Mathematical Modelling and Numerical Analysis, 39, 1149-1176(2005). http://journals.cambridge.org/article_S0764583X0500049X

    [4] Zhao L, Chen G, Yu W H et al. A fast waveguide port parameter extraction technique for the DGTD method[J]. IEEE Antennas and Wireless Propagation Letters, 16, 2659-2662(2017). http://ieeexplore.ieee.org/document/8010798/

    [5] Yang S, Zeng C P, Xiao C et al. Multi-frequency filtering characteristics of graphene-nanoribbon arrays based on finite difference time domain method[J]. Laser & Optoelectronics Progress, 56, 061301(2019).

    [6] Garcia S G. Fernandez Pantoja M, de Jong van Coevorden C M, et al. A new hybrid DGTD/FDTD method in 2-D[J]. IEEE Microwave and Wireless Components Letters, 18, 764-766(2008).

    [7] Lou Z, Jin J M. Modeling and simulation of broad-band antennas using the time-domain finite element method[J]. IEEE Transactions on Antennas and Propagation, 53, 4099-4110(2005). http://ieeexplore.ieee.org/document/1549993

    [8] He B, Teixeira F L. Sparse and explicit FETD via approximate inverse Hodge (mass) matrix[J]. IEEE Microwave and Wireless Components Letters, 16, 348-350(2006). http://ieeexplore.ieee.org/document/1637491/

    [9] Hao X, Ding D Z, Bi J J et al. A 3-D continuous-discontinuous Galerkin finite-element time-domain method for Maxwell's equations[J]. IEEE Antennas and Wireless Propagation Letters, 16, 908-911(2017).

    [10] Yang Q, Wei B, Li L Q et al. Simulation of electromagnetic waves in a magnetized cold plasma by the SO-DGTD method[J]. IEEE Transactions on Antennas and Propagation, 66, 4151-4157(2018).

    [11] Zheng C Q, Lu J S, Lü J et al. Research progress on photoacoustic conversion of metal nanomaterials[J]. Laser & Optoelectronics Progress, 57, 130002(2020).

    [12] Zhang H R, Sun J C, Deng Z L et al. Nanolasers: progress, new physics and technical challenges[J]. Chinese Journal of Lasers, 47, 0701013(2020).

    [13] Cui X W, Yang F, Gao M. Improved local time-stepping algorithm for leap-frog discontinuous Galerkin time-domain method[J]. IET Microwaves Antennas & Propagation, 12, 963-971(2018).

    [14] Yang Q, Wei B, Li L Q et al. Implementation of corner-free truncation strategy in DGTD method[J]. Waves in Random and Complex Media, 27, 367-380(2017).

    [15] Yan S, Lin C P, Arslanbekov R R et al. A discontinuous Galerkin time-domain method with dynamically adaptive Cartesian mesh for computational electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 65, 3122-3133(2017).

    [16] Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 24, 118-121(2007).

    [17] Ke J, Zhang L X, Zhou Q. Applications of compressive sensing in optical imaging[J]. Acta Optica Sinica, 40, 0111006(2020).

    [18] Zhang H, Cao L C, Jin G F et al. Progress on lensless digital holography imaging based on compressive holographic algorithm[J]. Laser & Optoelectronics Progress, 57, 080001(2020).

    [19] Qi Q, Chen M S, Huang Z X et al. A fast explicit FETD method based on compressed sensing[J]. Progress in Electromagnetics Research M, 55, 161-167(2017).

    [20] Cao X Y, Chen M S, Wu X L. Sparse transform matrices and their application in the calculation of electromagnetic scattering problems[J]. Chinese Physics Letters, 30, 028401(2013).

    [21] Qi Q, Cao X Y, Chen M S et al. An improved fast finite element time-domain method based on compressive sensing for cavity problems[J]. IEEE Microwave and Wireless Components Letters, 30, 331-334(2020).

    [22] Rice J R. Experiments on Gram-Schmidt orthogonalization[J]. Mathematics of Computation, 20, 325-328(1966).

    [23] Ge D B, Wei B[M]. Discontinuous Galerkin time domain in electromagnetic wave, 21-23(2019).

    [24] Montseny E, Pernet S, Ferriéres X et al. Dissipative terms and local time-stepping improvements in a spatial high order discontinuous Galerkin scheme for the time-domain Maxwell's equations[J]. Journal of Computational Physics, 227, 6795-6820(2008).

    [25] Cohen G, Ferrieres X, Pernet S. A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain[J]. Journal of Computational Physics, 217, 340-363(2006).

    [26] Feliziani M, Maradei F. An explicit-implicit solution scheme to analyze fast transients by finite elements[J]. IEEE Transactions on Magnetics, 33, 1452-1455(1997).

    [27] Tropp J A, Laska J N, Duarte M F et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 56, 520-544(2010).

    [28] Chen M S, Liu F L, Du H M et al. Compressive sensing for fast analysis of wide-angle monostatic scattering problems[J]. IEEE Antennas and Wireless Propagation Letters, 10, 1243-1246(2011).

    [29] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [30] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007).

    Qi Qi, Xinyuan Cao, Mingsheng Chen, Yi Liu, Xiaojing Kuang, Xianliang Wu. Fast Analysis of Electromagnetic Characteristics for Cavity Devices Based on Compressive Sensing[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191405
    Download Citation