• Chinese Optics Letters
  • Vol. 19, Issue 7, 072201 (2021)
Jian Chen, Guoliang Chen, and Qiwen Zhan*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202119.072201 Cite this Article Set citation alerts
    Jian Chen, Guoliang Chen, Qiwen Zhan. Self-aligned fiber-based dual-beam source for STED nanolithography[J]. Chinese Optics Letters, 2021, 19(7): 072201 Copy Citation Text show less
    References

    [1] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780(1994).

    [2] J. Du, S. Deng, S. Hou, L. Qiao, J. Chen, Q. Huang, C. Fan, Y. Cheng, Y. Zhao. Superresolution imaging of DNA tetrahedral nanostructures in cells by STED method with continuous wave lasers. Chin. Opt. Lett., 12, 041101(2014).

    [3] T. A. Klar, R. Wollhofen, J. Jacak. Sub-Abbe resolution: from STED microscopy to STED lithography. Phys. Scripta, 2014, 014049(2014).

    [4] Y. L. Zhang, Q. D. Chen, H. Xia, H. B. Sun. Designable 3D nanofabrication by femtosecond laser direct writing. Nano. Today, 5, 435(2010).

    [5] M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, T. A. Klar. Nano-anchors with single protein capacity produced with STED lithography. Nano. Lett., 13, 5672(2013).

    [6] J. Fischer, M. Wegener. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev., 7, 22(2013).

    [7] X. He, T. Li, J. Zhang, Z. Wang. STED direct laser writing of 45 nm width nanowire. Micromachines, 10, 726(2019).

    [8] T. Jiang, S. Gao, Z. Tian, H. Zhang, L. Niu. Fabrication of diamond ultra-fine structures by femtosecond laser. Chin. Opt. Lett., 18, 101402(2020).

    [9] B. Buchegger, J. Kreutzer, B. Plochberger, R. Wollhofen, D. Sivun, J. Jacak, G. J. Schütz, U. Schubert, T. A. Klar. Stimulated emission depletion lithography with mercapto-functional polymers. ACS Nano, 10, 1954(2016).

    [10] J. Kaschke, M. Wegener. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett., 40, 3986(2015).

    [11] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater., 3, 444(2004).

    [12] J. Fischer, G. von Freymann, M. Wegener. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater., 22, 3578(2010).

    [13] L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, J. T. Fourkas. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science, 324, 910(2009).

    [14] Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, X. M. Duan, S. Kawata. Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures. Adv. Mater., 20, 914(2008).

    [15] T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, R. R. McLeod. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science, 324, 913(2009).

    [16] H. Xia, S. Yang, L. Wang, J. Zhao, C. Xue, Y. Wu, R. Tai. Nonuniform self-imaging of achromatic Talbot lithography. Chin. Opt. Lett., 17, 062201(2019).

    [17] J. Fischer, J. B. Mueller, A. S. Quick, J. Kaschke, C. Barner-Kowollik, M. Wegener. Exploring the mechanisms in STED-enhanced direct laser writing. Adv. Opt. Mater., 3, 221(2015).

    [18] Z. Gan, Y. Cao, R. A. Evans, M. Gu. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun., 4, 2061(2013).

    [19] M. Gu, H. Kang, X. Li. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam. Sci. Rep. UK, 4, 3627(2014).

    [20] D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, L. Kastrup. A STED microscope aligned by design. Opt, Express, 17, 16100(2009).

    [21] L. Yan, P. Kristensen, S. Ramachandran. Vortex fibers for STED microscopy. APL Photon., 4, 022903(2019).

    [22] S. Ramachandran, P. Kristensen. Optical vortices in fiber. Nanophotonics, 2, 455(2013).

    [23] S. Ramachandran, P. Kristensen, M. F. Yan. Generation and propagation of radially polarized beams in optical fibers. Opt. Lett., 34, 2525(2009).

    [24] A. Chong, L. G. Wright, F. W. Wise. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress. Rep. Prog. Phys., 78, 113901(2015).

    [25] C. Y. Chong, J. Buckley, F. Wise. All-normal-dispersion femtosecond fiber laser. Opt. Express, 14, 10095(2006).

    [26] Y. Xue, C. Kuang, X. Hao, Z. Gu, X. Liu. A method for generating a three-dimensional dark spot using a radially polarized beam. J. Opt., 13, 125704(2011).

    [27] J. Chen, C. Wan, L. Kong, Q. Zhan. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum. Opt. Express, 25, 8966(2017).

    [28] Q. Zhan, J. R. Leger. Focus shaping using cylindrical vector beams. Opt. Express, 10, 324(2002).

    [29] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1(2009).

    [30] J. Chen, C. Wan, L. J. Kong, Q. W. Zhan. Tightly focused optical field with controllable photonic spin orientation. Opt. Express, 25, 19517(2017).

    [31] P. Török, P. R. T. Munro. The use of Gauss–Laguerre vector beams in STED microscopy. Opt. Express, 12, 3605(2004).

    [32] M. Dyba, S. W. Hell. Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys. Rev. Lett., 88, 163901(2002).

    CLP Journals

    [1] Xingwang Chen, Lei Chen, Ying Wang, Tao Wei, Jing Hu, Miao Cheng, Qianqian Liu, Wanfei Li, Yun Ling, Bo Liu. AgGeSbTe thin film as a negative heat-mode resist for dry lithography[J]. Chinese Optics Letters, 2022, 20(3): 031601

    Jian Chen, Guoliang Chen, Qiwen Zhan. Self-aligned fiber-based dual-beam source for STED nanolithography[J]. Chinese Optics Letters, 2021, 19(7): 072201
    Download Citation