• High Power Laser Science and Engineering
  • Vol. 9, Issue 2, 02000e26 (2021)
Chenyi Su1, Xingqi Xu1,2, Jinghua Huang1, and Bailiang Pan1,*
Author Affiliations
  • 1Department of Physics, Zhejiang University, Hangzhou310027, China
  • 2Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou310027, China
  • show less
    DOI: 10.1017/hpl.2021.8 Cite this Article Set citation alerts
    Chenyi Su, Xingqi Xu, Jinghua Huang, Bailiang Pan, "Modeling of three-dimensional exciplex pumped fluid Cs vapor laser with transverse and longitudinal gas flow," High Power Laser Sci. Eng. 9, 02000e26 (2021) Copy Citation Text show less
    Sketch of optical systems of XPCsL.
    Fig. 1. Sketch of optical systems of XPCsL.
    Diagram of energy states in high-power XPCsL system.
    Fig. 2. Diagram of energy states in high-power XPCsL system.
    Comparison of slope efficiency between experiment[19" target="_self" style="display: inline;">19] and simulation results.
    Fig. 3. Comparison of slope efficiency between experiment[19] and simulation results.
    Three-dimensional temperature distribution under different flow directions. The velocity of flow and wall temperature in (a) and (b) are 50 m/s and 473 K.
    Fig. 4. Three-dimensional temperature distribution under different flow directions. The velocity of flow and wall temperature in (a) and (b) are 50 m/s and 473 K.
    (a), (b) The temperature distribution in the x–y plane at y = 0 in Figures 4(a) and 4(b). (c), (d) The distribution of in the x–y plane at y = 0 in Figures 4(a) and 4(b).
    Fig. 5. (a), (b) The temperature distribution in the xy plane at y = 0 in Figures 4(a) and 4(b). (c), (d) The distribution of in the xy plane at y = 0 in Figures 4(a) and 4(b).
    Optical-to-optical efficiency and maximum temperature as a function of flow velocity with different pump intensity at Tw = 473 K.
    Fig. 6. Optical-to-optical efficiency and maximum temperature as a function of flow velocity with different pump intensity at Tw = 473 K.
    Optical-to-optical efficiency and maximum temperature as a function of flow velocity with different wall temperature at pump intensity of 5 × 1010 W/m2.
    Fig. 7. Optical-to-optical efficiency and maximum temperature as a function of flow velocity with different wall temperature at pump intensity of 5 × 1010 W/m2.
    No.ProcessCross-section/rateReferences
    Thermal associative/dissociative process
    1$\mathrm{Cs}\left({6}^2{S}_{1/2}\right)+ \mathrm{Ar}\rightleftharpoons \mathrm{Cs}\left({X}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}$${k}_{01},\ {k}_{10}$
    [12]
    2$\mathrm{Cs}\left({B}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}+ \mathrm{Ar}\rightleftharpoons \mathrm{Cs}\left({6}^2{P}_{3/2}\right)+ \mathrm{Ar}$${k}_{23},\ {k}_{32}$
    Pumping
    3$\mathrm{Cs}\left({X}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}+h{\nu}_p\to \mathrm{Cs}\left({B}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}$${P}_{12}$Equation (9)
    Lasing
    4$\mathrm{Cs}\left({6}^2{P}_{3/2},{6}^2{P}_{1/2}\right)\to \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+h{\nu}_l$${L}_{30}$Equation (8)
    Spontaneous emission
    5$\mathrm{Cs}\left({6}^2{P}_{3/2}\right)\to \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+h{\nu}_l$${A}_{30}$
    [26]
    6$\mathrm{Cs}\left({6}^2{D}_{3/2},{6}^2{D}_{5/2}\right)\to \mathrm{Cs}\left({6}^2{P}_{3/2}\right)+ h\nu$${A}_{43}$
    Photoexcitation
    7$\mathrm{Cs}\left({6}^2{P}_{3/2},{6}^2{P}_{1/2}\right)+h{\nu}_p\left(h{\nu}_l\right)\to \mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)$${Phe}_{34}$[26]
    Energy pooling
    8$2 \mathrm{Cs}\left({6}^2{P}_{3/2},{6}^2{P}_{1/2}\right)\to \mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)$${Ep}_{34}$[27]
    Photoionization
    9$\mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+h{\nu}_{p,l}\to \mathrm{Cs}^{+}+\mathrm{e}$${Phi}_{45}$[27]
    Penning ionization
    10$\mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+ \mathrm{Cs}\left({6}^2{P}_{3/2,1/2}\right)\to \mathrm{Cs}^{+}+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+\mathrm{e}$$Pen$[27]
    Dissociative recombination
    11$\mathrm{Cs}^{+}+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+ \mathrm{Cs}\to \mathrm{Cs}_2^{+}+ \mathrm{Cs}$${R}_1$
    12$\mathrm{Cs}^{+}+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+ \mathrm{Ar}\to \mathrm{Cs}_2^{+}+ \mathrm{Ar}$[26]
    13$\mathrm{Cs}_2^{+}+\mathrm{e}\to \mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)$${R}_2$
    Table 1. Kinetic processes in the XPAL system.
    Length of cellTemperaturePressure of ArOC ratio
    4 cm455 K1270 Torr0.13
    Table 2. Parameters of experiment and simulation.
    ParametersDefinitionValue
    $L$Length of the cell2 cm
    $S$Cross-section of the cell2 mm$\times$2 mm
    ${P}_{\mathrm{Ar}}$Pressure of ethane1300 Torr
    ${R}_{\mathrm{oc}}$OC reflectivity0.5
    ${R}_p$Back mirror reflectivity0.99
    ${T}_l$Single-pass cell window transmission0.98
    ${T}_s$Intra-cavity single-pass loss0.9
    ${w}_{0,p}$Waist of the pump beam0.5 mm
    ${w}_{0,l}$Waist of the laser beam0.5 mm
    Table 3. Parameters used in the simulation.
    Chenyi Su, Xingqi Xu, Jinghua Huang, Bailiang Pan, "Modeling of three-dimensional exciplex pumped fluid Cs vapor laser with transverse and longitudinal gas flow," High Power Laser Sci. Eng. 9, 02000e26 (2021)
    Download Citation