• Laser & Optoelectronics Progress
  • Vol. 58, Issue 12, 1210024 (2021)
Wei Song*, Jingjing Xing, Yanling Du, and Qi He**
Author Affiliations
  • Department of Information and Technology, Shanghai Ocean University, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP202158.1210024 Cite this Article Set citation alerts
    Wei Song, Jingjing Xing, Yanling Du, Qi He. Underwater Image Enhancement Based on Generative Adversarial Network with Preprocessed Image Penalty[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1210024 Copy Citation Text show less
    References

    [1] Ludvigsen M, Sortland B, Johnsen G et al. Applications of geo-referenced underwater photo mosaics in marine biology and archaeology[J]. Oceanography, 20, 140-149(2007). http://www.researchgate.net/publication/33549713_Applications_of_geo-referenced_underwater_photo_mosaics_in_marine_biology_and_archaeology

    [2] Foresti G L. Visual inspection of sea bottom structures by an autonomous underwater vehicle[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31, 691-705(2001). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=956031

    [3] Hummel R. Image enhancement by histogram transformation[J]. Computer Graphics and Image Processing, 6, 184-195(1977). http://www.sciencedirect.com/science/article/pii/S0146664X77800117

    [4] Zuiderveld K. Contrast limited adaptive histogram equalization[M]. //Graphics Gems, 474-485(1994).

    [5] Huang D M, Wang Y, Song W et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[M]. //Schoeffmann K, Chalidabhongse T H, Ngo C W, et al. MultiMedia modeling. MMM 2018. Lecture notes in computer science, 10704, 453-465(2018).

    [6] Ancuti C, Ancuti C O, Haber T et al. Enhancing underwater images and videos by fusion[C]. //2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA., 81-88(2012).

    [7] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011). http://www.freepatentsonline.com/y2011/0188775.html

    [8] Drews Jr P, do Nascimento E, Moraes F et al. Transmission estimation in underwater single images[C]. //2013 IEEE International Conference on Computer Vision Workshops, December 2-8, 2013, Sydney, NSW, Australia., 825-830(2013).

    [9] Peng Y T, Zhao X Y, Cosman P C. Single underwater image enhancement using depth estimation based on blurriness[C]. //2015 IEEE International Conference on Image Processing (ICIP), September 27-30, 2015, QC, Canada., 4952-4956(2015).

    [10] Peng Y T, Cosman P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 26, 1579-1594(2017). http://www.ncbi.nlm.nih.gov/pubmed/28182556

    [11] Jin W P, Guo J C, Qi Q. Underwater image enhancement based on conditional generative adversarial network[J]. Laser & Optoelectronics Progress, 57, 141002(2020).

    [12] Lu H M, Li Y J, Mu S L et al. Motor anomaly detection for unmanned aerial vehicles using reinforcement learning[J]. IEEE Internet of Things Journal, 5, 2315-2322(2018).

    [13] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C]. //NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8, 2014, Cambridge, MA, US, 2, 2672-2680(2014).

    [14] Zhu J Y, Park T, Isola P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. //2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy., 2242-2251(2017).

    [15] Fabbri C, Islam M J, Sattar J. Enhancing underwater imagery using generative adversarial networks[C]. //2018 IEEE International Conference on Robotics and Automation (ICRA), May 21-25, 2018, Brisbane, QLD, Australia., 7159-7165(2018).

    [16] Isola P, Zhu J Y, Zhou T H et al. Image-to-image translation with conditional adversarial networks[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 5967-5976(2017).

    [17] Mirza M, Osindero S. Conditional generative adversarial nets[EB/OL]. (2014-11-06)[2020-09-05]. https://arxiv.org/abs/1411.1784

    [18] Lu J Y, Li N, Zhang S Y et al. Multi-scale adversarial network for underwater image restoration[J]. Optics & Laser Technology, 110, 105-113(2019). http://www.sciencedirect.com/science/article/pii/S003039921830690X

    [19] Chen X Y, Yu J Z, Kong S H et al. Towards quality advancement of underwater machine visionwith generative adversarial networks[EB/OL]. (2017-12-03)[2020-09-05]. https://arxiv.org/abs/1712.00736

    [20] Liu P, Wang G Y, Qi H et al. Underwater image enhancement with a deep residual framework[J]. IEEE Access, 7, 94614-94629(2019). http://ieeexplore.ieee.org/document/8763933/citations

    [21] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 1646-1654(2016).

    [22] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2020-09-05]. https://arxiv.org/abs/1409.1556

    [23] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [24] Chen X Y, Zhang W J, Sun W Z et al. Super-resolution reconstruction of images based on multi-scale and multi-residual network[J]. Laser & Optoelectronics Progress, 57, 181009(2020).

    [25] Xu Z G, Yan J J, Zhu H L. Mural image super resolution reconstruction based on multi-scale residual attention network[J]. Laser & Optoelectronics Progress, 57, 161012(2020).

    [26] Li C, Wand M. Precomputed real-time texture synthesis with Markovian generative adversarial networks[M]. //Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9907, 702-716(2016).

    [27] Gulrajani I, Ahmed F, Arjovsky M et al. Improved training of wasserstein GANs[C]. //NIPS'17: Proceedings of the 31st International Conference on Neural Information, December 4, 2017, Red Hook, NY, US, 5767-5777(2017).

    [28] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[EB/OL]. (2017-01-26)[2020-09-05]. https://arxiv.org/abs/1701.07875

    [29] Deng J, Dong W, Socher R et al. ImageNet: a large-scale hierarchical image database[C]. //2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2009, Miami, FL, USA, 248-255(2009).

    [30] Islam M J, Xia Y Y, Sattar J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 5, 3227-3234(2020). http://ieeexplore.ieee.org/document/9001231

    [31] Li C Y, Guo C L, Ren W Q et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 29, 4376-4389(2020).

    [32] Li C Y, Anwar S, Porikli F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 98, 107038(2020). http://www.sciencedirect.com/science/article/pii/S0031320319303401

    [33] Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 41, 541-551(2016). http://ieeexplore.ieee.org/document/7305804/

    [34] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA, 779-788(2016).

    [35] Zhao Q, Li B Q, Li T W. Target detection algorithm based on improved YOLOv3[J]. Laser & Optoelectronics Progress, 57, 121502(2020).

    Wei Song, Jingjing Xing, Yanling Du, Qi He. Underwater Image Enhancement Based on Generative Adversarial Network with Preprocessed Image Penalty[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1210024
    Download Citation