• Laser & Optoelectronics Progress
  • Vol. 58, Issue 19, 1900001 (2021)
Yuyang Xu1、2, Jin Yu2、3、**, Zeqiang Mo2、3, Huimin Jia1, Jilong Tang1, Xiaohua Wang1, Jinduo Wang3, and Zhipeng Wei1、*
Author Affiliations
  • 1State Key Laboratory for High Power Semiconductor Laser of Changchun University of Science and Technology, Changchun , Jilin 130022, China
  • 2Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202158.1900001 Cite this Article Set citation alerts
    Yuyang Xu, Jin Yu, Zeqiang Mo, Huimin Jia, Jilong Tang, Xiaohua Wang, Jinduo Wang, Zhipeng Wei. Advances in Cavity Ring-Down Absorption Spectroscopy Research and Typical Applications[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900001 Copy Citation Text show less
    References

    [1] Hinkley E D. High-resolution infrared spectroscopy with a tunable diode laser[J]. Applied Physics Letters, 16, 351-354(1970).

    [2] Ghorbani R, Schmidt F M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes[J]. Optics Express, 25, 12743-12752(2017).

    [3] Nie W, Kan R F, Yang C G et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 45, 0911001(2018).

    [4] Adler F, Masłowski P, Foltynowicz A et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb[J]. Optics Express, 18, 21861-21872(2010).

    [5] Schütze C, Sauer U. Challenges associated with the atmospheric monitoring of areal emission sources and the need for optical remote sensing techniques: an open-path Fourier transform infrared (OP-FTIR) spectroscopy experience report[J]. Environmental Earth Sciences, 75, 1-14(2016).

    [6] Peng Y Q, Kan R F, Xu Z Y et al. Measurement of CO concentration in combustion field based on mid-infrared absorption spectroscopy[J]. Chinese Journal of Lasers, 45, 0911010(2018).

    [7] Platt U. Dry deposition of SO2[J]. Atmospheric Environment, 12, 363-367(1978).

    [8] Hu S X, Chen Y F, Liu Q W et al. Differential absorption lidar system for background atmospheric SO2 and NO2 measurements[J]. Chinese Journal of Lasers, 45, 0911009(2018).

    [9] Li B C, Gong Y. Review of cavity ring-down techniques for high reflectivity measurements[J]. Laser & Optoelectronics Progress, 47, 021203(2010).

    [10] Ye J, Ma L S, Hall J L. Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition[J]. Optics Letters, 21, 1000-1002(1996).

    [11] Ma W G, Zhou Y T, Zhao G et al. Review on noise immune cavity enhanced optical heterodyne molecular spectroscopy[J]. Chinese Journal of Lasers, 45, 0911007(2018).

    [12] Thorpe M J, Moll K D, Jones R J et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection[J]. Science, 311, 1595-1599(2006).

    [13] Berden G, Engeln R[M]. Cavity ring-down spectroscopy, 3-10(2009).

    [14] O’Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 59, 2544-2551(1988).

    [15] Zalicki P, Ma Y, Zare R N et al. Methyl radical measurement by cavity ring-down spectroscopy[J]. Chemical Physics Letters, 234, 269-274(1995).

    [16] Manne J, Sukhorukov O, Jäger W et al. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath[J]. Applied Optics, 45, 9230-9237(2006).

    [17] Alquaity A B S, Es-Sebbar E T, Farooq A. Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy[J]. Optics Express, 23, 7217-7226(2015).

    [18] DePrince B A, Rocher B E, Carroll A M et al. Extending high-finesse cavity techniques to the far-infrared[J]. The Review of Scientific Instruments, 84, 075107(2013).

    [19] Herbelin J M, McKay J A, Kwok M A et al. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method[J]. Applied Optics, 19, 144-147(1980).

    [20] Hereld M, Anderson D Z. Beat frequency locking in passive ring laser gyroscopes[J]. Proceedings of SPIE, 487, 33-38(1984).

    [21] Romanini D, Kachanov A A, Stoeckel F. Diode laser cavity ring down spectroscopy[J]. Chemical Physics Letters, 270, 538-545(1997).

    [22] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 92, 403-408(2008).

    [23] Kasyutich V L, Poulidi D, Jalil M et al. Application of a cw quantum cascade laser CO2 analyzer to catalytic oxidation reaction monitoring[J]. Applied Physics B, 110, 263-269(2013).

    [24] Vallance C. Innovations in cavity ringdown spectroscopy[J]. New Journal of Chemistry, 29, 867-874(2005).

    [25] Scherer J J. Ringdown spectral photography[J]. Chemical Physics Letters, 292, 143-153(1998).

    [26] Marcus G A, Schwettman H A. Cavity ringdown spectroscopy of thin films in the mid-infrared[J]. Applied Optics, 41, 5167-5171(2002).

    [27] Jackson D A. The spherical Fabry-Perot interferometer as an instrument of high resolving power for use with external or with internal atomic beams[J]. Proceedings of the Royal Society of London Series A, 263, 289-308(1961).

    [28] Kastler A. Transmission of light pulse through a Fabry-Perot interferometer[J]. Nouvelle Revue d’Optique, 5, 133-139(1974).

    [29] McHale L E, Hecobian A, Yalin A P. Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air[J]. Optics Express, 24, 5523-5535(2016).

    [30] Lin C, Hu R Z, Xie P H et al. Simultaneous measurement of nitrogen dioxide and organic nitrate based on thermal dissociation cavity ring-down spectroscopy[J]. Acta Optica Sinica, 40, 1201003(2020).

    [31] Morville J, Chenevier M, Kachanov A A et al. Trace gas detection with DFB lasers and cavity ring-down spectroscopy[J]. Proceedings of SPIE, 4485, 236-243(2002).

    [32] Morville J, Romanini D, Kachanov A A et al. Two schemes for trace detection using cavity ringdown spectroscopy[J]. Applied Physics B, 78, 465-476(2004).

    [33] Wang J D, Yu J, Mo Z Q et al. Multicomponent gas detection based on concise CW-cavity ring-down spectroscopy with a bow-tie design[J]. Applied Optics, 58, 2773-2781(2019).

    [34] Song S M, Yan C X. Trace methane detection based on cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 40, 2023-2028(2020).

    [35] Tan Z Q, Long X W, Huang Y et al. Etaloning effects in continuous-wave cavity ring down spectroscopy[J]. Chinese Journal of Lasers, 35, 1563-1566(2008).

    [36] Atherton K, Stewart G, Yu H et al. Fiber optic intra-cavity spectroscopy: combined ring-down and ICLAS architectures using fiber lasers[J]. Proceedings of SPIE, 4204, 124-130(2001).

    [37] Brown R S, Kozin I, Tong Z G et al. Fiber-loop ring-down spectroscopy[J]. The Journal of Chemical Physics, 117, 10444-10447(2002).

    [38] Zhu C G, Wang G W, Zheng Z L et al. A method for real-time monitoring of inherent system loss designed for FLRDS-based gas sensors[J]. IEEE Photonics Journal, 8, 1-8(2016).

    [39] Zhang Y N, Zhao Y, Wu D et al. Fiber loop ring-down refractive index sensor based on high- Q photonic crystal cavity[J]. IEEE Sensors Journal, 14, 1878-1885(2014).

    [40] Jiang Y J, Zhao J L, Yang D X et al. High-sensitivity pressure sensors based on mechanically induced long-period fiber gratings and fiber loop ring-down[J]. Optics Communications, 283, 3945-3948(2010).

    [41] Herath C, Wang C J, Kaya M et al. Fiber loop ringdown DNA and bacteria sensors[J]. Journal of Biomedical Optics, 16, 050501(2011).

    [42] Huang H F, Lehmann K K. Noise in cavity ring-down spectroscopy caused by transverse mode coupling[J]. Optics Express, 15, 8745-8759(2007).

    [43] Wang J D. Study on mode-matching in continuous wave cavity ring-down spectroscopy[D], 42-44(2020).

    [44] Cygan A, Lisak D, Masłowski P et al. Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer[J]. The Review of Scientific Instruments, 82, 063107(2011).

    [45] Wang J, Sun Y R, Tao L G et al. Comb-locked cavity ring-down saturation spectroscopy[J]. Review of Scientific Instruments, 88, 043108(2017).

    [46] Wang J, Sun Y R, Tao L G et al. Communication: molecular near-infrared transitions determined with sub-kHz accuracy[J]. The Journal of Chemical Physics, 147, 091103(2017).

    [47] Pan H, Cheng C F, Sun Y R et al. Laser-locked, continuously tunable high resolution cavity ring-down spectrometer[J]. Review of Scientific Instruments, 82, 103110(2011).

    [48] Paldus B A, Harb C C, Spence T G et al. Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers[J]. Optics Letters, 25, 666-668(2000).

    [49] Tan Z Q, Long X W, Huang Y. High sensitivity CW-cavity ring down spectroscopy of tuning wavelength[J]. Acta Optica Sinica, 29, 747-751(2009).

    [50] Tan Z Q, Long X W. Influence of cavity length change on measurement of CW cavity ring-down[J]. Laser Technology, 31, 438-441(2007).

    [51] Mo Z Q, Yu J, Wang J D et al. Current-modulated cavity ring-down spectroscopy for mobile monitoring of natural gas leaks[J]. Journal of Lightwave Technology, 39, 4020-4027(2021).

    [52] Debecker I, Mohamed A K, Romanini D. High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning[J]. Optics Express, 13, 2906-2915(2005).

    [53] He Y, Orr B J. Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases[J]. Applied Physics B, 75, 267-280(2002).

    [54] Boyson T K, Spence T G, Calzada M E et al. Frequency domain analysis for laser-locked cavity ringdown spectroscopy[J]. Optics Express, 19, 8092-8101(2011).

    [55] Atkinson D B. Solving chemical problems of environmental importance using cavity ring-down spectroscopy[J]. The Analyst, 128, 117-125(2003).

    [56] Dubé W P, Brown S S, Osthoff H D et al. Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy[J]. Review of Scientific Instruments, 77, 034101(2006).

    [57] Li J L, Wang W G, Li K et al. Development and application of the multi-wavelength cavity ring-down aerosol extinction spectrometer[J]. Journal of Environmental Sciences, 76, 227-237(2019).

    [58] Wang C J, Srivastava N, Dibble T S. Observation and quantification of OH radicals in the far downstream part of an atmospheric microwave plasma jet using cavity ringdown spectroscopy[J]. Applied Physics Letters, 95, 051501(2009).

    [59] Wang C J, Wu W. Simultaneous measurements of OH(A) and OH(X) radicals in microwave plasma jet-assisted combustion of methane/air mixtures around the lean-burn limit using optical emission spectroscopy and cavity ringdown spectroscopy[J]. Journal of Physics D, 46, 464008(2013).

    [60] Rempe G, Lalezari R, Thompson R J et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 17, 363-365(1992).

    [61] Li L P, Liu T, Li G et al. Measurement of ultra-low losses in optical supercavity[J]. Acta Physica Sinica, 53, 1401-1405(2004).

    [62] Qu Z C, Gao C M, Han Y L et al. Detection of chemical warfare agents based on quantum cascade laser cavity ring-down spectroscopy[J]. Chinese Optics Letters, 10, 050102(2012).

    [63] Payne B F, Ackley R, Paige Wicker A et al. Characterization of methane plumes downwind of natural gas compressor stations in Pennsylvania and New York[J]. Science of the Total Environment, 580, 1214-1221(2017).

    [64] Dickens G R, Paull C K, Wallace P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir[J]. Nature, 385, 426-428(1997).

    [65] Yvon-Lewis S A, Hu L, Kessler J. Methane flux to the atmosphere from the Deepwater Horizon oil disaster[J]. Geophysical Research Letters, 38, 1-5(2011).

    [66] Neri G, Lacquaniti A, Rizzo G et al. Real-time monitoring of breath ammonia during haemodialysis: use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques[J]. Nephrology Dialysis Transplantation, 27, 2945-2952(2012).

    [67] Gong Z Y, Sun M X, Jiang C Y et al. A ringdown breath acetone analyzer: performance and validation using gas chromatography-mass spectrometry[J]. Journal of Analytical & Bioanalytical Techniques, S7, 1-8(2014).

    [68] Kim A, Dueker S R, Dong F et al. Human ADME for YH12852 using wavelength scanning cavity ring-down spectroscopy (WS-CRDS) after a low radioactivity dose[J]. Bioanalysis, 12, 87-98(2020).

    [69] Chen W, Roslund K, Fogarty C L et al. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy[J]. Scientific Reports, 6, 22577(2016).

    Yuyang Xu, Jin Yu, Zeqiang Mo, Huimin Jia, Jilong Tang, Xiaohua Wang, Jinduo Wang, Zhipeng Wei. Advances in Cavity Ring-Down Absorption Spectroscopy Research and Typical Applications[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900001
    Download Citation