• Photonics Research
  • Vol. 9, Issue 9, 1675 (2021)
Fei Sun, Yichao Liu*, and Yibiao Yang
Author Affiliations
  • Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.1364/PRJ.432030 Cite this Article Set citation alerts
    Fei Sun, Yichao Liu, Yibiao Yang. Optical funnel: broadband and uniform compression of electromagnetic fields to an air neck[J]. Photonics Research, 2021, 9(9): 1675 Copy Citation Text show less
    References

    [1] J. Xia, J. Tang, F. Bao, Y. Sun, M. Fang, G. Cao, J. Evans, S. He. Turning a hot spot into a cold spot: polarization-controlled Fano-shaped local-field responses probed by a quantum dot. Light Sci. Appl., 9, 166(2020).

    [2] H. Linnenbank, Y. Grynko, J. Förstner, S. Linden. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light Sci. Appl., 5, e16013(2016).

    [3] O. Stranik, H. McEvoy, C. McDonagh, B. MacCraith. Plasmonic enhancement of fluorescence for sensor applications. Sens. Actuators B, 107, 148-153(2005).

    [4] M. I. Stockman. Nanoplasmonic sensing and detection. Science, 348, 287-288(2015).

    [5] C. Hägglund, M. Zäch, G. Petersson, B. Kasemo. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl. Phys. Lett., 92, 053110(2008).

    [6] L. Etgar. Semiconductor nanocrystals as light harvesters in solar cells. Materials, 6, 445-459(2013).

    [7] Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, M. Hide. Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens. Bioelectron., 26, 674-681(2010).

    [8] V. Chabot, Y. Miron, M. Grandbois, P. G. Charette. Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sens. Actuators B, 174, 94-101(2012).

    [9] P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem., 1, 601-626(2008).

    [10] C. Matricardi, C. Hanske, J. L. Garcia-Pomar, J. Langer, A. Mihi, L. M. Liz-Marzan. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano, 12, 8531-8539(2018).

    [11] K. N. Kanipe, P. P. Chidester, G. D. Stucky, M. Moskovits. Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity. ACS Nano, 10, 7566-7571(2016).

    [12] P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, D. Huffaker. Surface plasmon-enhanced nanopillar photodetectors. Nano Lett., 11, 5279-5283(2011).

    [13] J. Dong, Z. Zhang, H. Zheng, M. Sun. Recent progress on plasmon-enhanced fluorescence. Nanophotonics, 4, 472-490(2015).

    [14] M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photon. Nanostr. Fundam. Appl., 6, 87-95(2008).

    [15] P.-F. Zhao, L. Xu, G.-X. Cai, N. Liu, H.-Y. Chen. A feasible approach to field concentrators of arbitrary shapes. Front. Phys., 13, 134205(2018).

    [16] Y. Luo, R. Zhao, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry. Harvesting light with transformation optics. Sci. China Inf. Sci., 56, 1-13(2013).

    [17] M. G. Silveirinha, N. Engheta. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials. Phys. Rev. B, 76, 245109(2007).

    [18] Y. Jin, P. Zhang, S. He. Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial. Phys. Rev. B, 81, 085117(2010).

    [19] W. Shi, B. Yuan, J. Mao, C. Wang. Enhancement of electromagnetic energy by plasma antenna. Nano Energy, 76, 105053(2020).

    [20] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [21] U. Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [22] M. Wang, N. Pan. Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R Rep., 63, 1-30(2008).

    [23] Y. Li, W. Li, G. Du, N. Chen. Low temperature preparation of CaCu3Ti4O12 ceramics with high permittivity and low dielectric loss. Ceram. Int., 43, 9178-9183(2017).

    [24] M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min. A terahertz metamaterial with unnaturally high refractive index. Nature, 470, 369-373(2011).

    [25] H. Krishnamoorthy, G. Adamo, J. Yin, V. Savinov, N. Zheludev, C. Soci. Infrared dielectric metamaterials from high refractive index chalcogenides. Nat. Commun., 11, 1692(2020).

    [26] J.-T. Shen, P. B. Catrysse, S. Fan. Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett., 94, 197401(2005).

    [27] J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, S. Fan, S. O. Kim. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat. Commun., 7, 12911(2016).

    [28] R. Winston, J. C. Miñano, P. G. Benitez. Nonimaging Optics(2005).

    [29] G. Marko, A. Prajapati, G. Shalev. Subwavelength nonimaging light concentrators for the harvesting of the solar radiation. Nano Energy, 61, 275-283(2019).

    [30] A. Prajapati, Y. Nissan, T. Gabay, G. Shalev. Broadband absorption of the solar radiation with surface arrays of subwavelength light funnels. Nano Energy, 54, 447-452(2018).

    [31] A. Prajapati, A. Chauhan, D. Keizman, G. Shalev. Approaching the Yablonovitch limit with free-floating arrays of subwavelength trumpet non-imaging light concentrators driven by extraordinary low transmission. Nanoscale, 11, 3681-3688(2019).

    [32] G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, T. J. Cui. Realization of a broadband electromagnetic gateway at microwave frequencies. Appl. Phys. Lett., 107, 153503(2015).

    [33] M. L. Chen, L. J. Jiang, W. E. Sha. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency. J. Appl. Phys., 119, 064506(2016).

    [34] A. Erentok, P. L. Luljak, R. W. Ziolkowski. Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans. Antennas Propag., 53, 160-172(2005).

    [35] C. Liu, G. Gan, X. Cui. Visible perfect reflectors realized with all-dielectric metasurface. Opt. Commun., 402, 226-230(2017).

    [36] C. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. Tretyakov, C. Simovski. Perfect magnetic mirror and simple perfect absorber in the visible spectrum. Phys. Rev. B, 91, 115305(2015).

    [37] L. Xu, H. Chen. Conformal transformation optics. Nat. Photonics, 9, 15-23(2015).

    [38] R. E. Collin. Field Theory of Guided Waves, 5(1990).

    Fei Sun, Yichao Liu, Yibiao Yang. Optical funnel: broadband and uniform compression of electromagnetic fields to an air neck[J]. Photonics Research, 2021, 9(9): 1675
    Download Citation