• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0531001 (2022)
Shengyuan Lei**, Zhimin Cai, Xincheng Jiang, Haili Huang, Yifei Dai, and Weizhou Li*
Author Affiliations
  • School of Resources, Environment and Materials, Guangxi University, Nanning , Guangxi 530004, China
  • show less
    DOI: 10.3788/LOP202259.0531001 Cite this Article Set citation alerts
    Shengyuan Lei, Zhimin Cai, Xincheng Jiang, Haili Huang, Yifei Dai, Weizhou Li. Effect of Energy Density on Structure and Properties of a Laser Cladding Molybdenum Layer[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0531001 Copy Citation Text show less
    References

    [1] Osadnik M, Wrona A, Lis M et al. Plasma-sprayed Mo-Re coatings for glass industry applications[J]. Surface and Coatings Technology, 318, 349-354(2017).

    [2] Zhang H A, Lü J, Zhuang S X et al. Effect of WSi2 and Si3N4 contents on the thermal expansion behaviors of (Mo, W)Si2-Si3N4 composites[J]. Ceramics International, 43, 2847-2852(2017).

    [3] Patel P D, Patel R N, Patel H C et al. Experimental investigation on life cycle analysis of the moly (Mo) coated piston ring in C. I. engine[M]. Patel H C, Deheri G, Patel H S, et al. Proceedings of international conference on advances in tribology and engineering systems, 321-329(2014).

    [4] Yan J H, He Z Y, Wang Y et al. Microstructure and wear resistance of plasma-sprayed molybdenum coating reinforced by MoSi2 particles[J]. Journal of Thermal Spray Technology, 25, 1322-1329(2016).

    [5] Das P, Paul S, Bandyopadhyay P P. Tribological behaviour of plasma sprayed diamond reinforced molybdenum coatings[J]. International Journal of Refractory Metals and Hard Materials, 78, 350-359(2019).

    [6] Bewlay B P, Jackson M R, Subramanian P R et al. A review of very-high-temperature Nb-silicide-based composites[J]. Metallurgical and Materials Transactions A, 34, 2043-2052(2003).

    [7] Feng J S. The recent advance in applications of niobium[J]. Rare Metal Materials and Engineering, 23, 7-12(1994).

    [8] Ren J S, Guo X P. Improvement of high-temperature oxidation resistance of niobium-based alloys by alloying and coating technology[J]. Rare Metals & Cemented Carbides, 34, 44-47(2006).

    [9] Yue G, Guo X P, Qiao Y Q. Study on the diffusion barrier effect of WSi2 layer at the MoSi2/Nb-Ti-Si based alloy interface[J]. Corrosion Science, 163, 108299(2020).

    [10] Yue G, Guo X P, Qiao Y Q et al. Electrodeposition of Mo/Re duplex layer and preparation of MoSi2/ReSi2/NbSi2 compound coating on Nb-Ti-Si based alloy[J]. Corrosion Science, 153, 283-291(2019).

    [11] Zhao M, Li Z X, Huang C L et al. Mo diffusion in glow plasma surface molybdenizing of niobium alloy[J]. Chinese Journal of Rare Metals, 34, 839-843(2010).

    [12] Maksarov V, Krasnyy V. The formation of surface roughness of piston rings for the purpose of improving the adhesion of wear-resistant coatings[J]. Key Engineering Materials, 736, 73-78(2017).

    [13] Yang J X, Wang Z C, Wang X et al. Microstructure and properties of laser cladding MoSi2 composite coating[J]. Chinese Journal of Lasers, 40, 1203004(2013).

    [14] Li M C, Zhang P L, Zhuang Q Q et al. Microstructure and micromechanical features of Ni-Mo-Si coatings on copper plate surfaces by laser cladding[J]. Chinese Journal of Lasers, 44, 1202004(2017).

    [15] Wang F Z, Li D C, Sun Y J[M]. Molybdenum materials and processing, 312(2008).

    [16] Zhu W Z, Dang M Z, Tian J et al. Effect of laser energy density on relative density, microstructure and mechanical properties of Cu-Al-Ni-Ti alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 56, 53-64(2020).

    [17] Zhao S G, Li C L. Relationship between crack rate of CBN coating and parameters of laser cladding[J]. China Surface Engineering, 28, 119-126(2015).

    [18] Xiong B K, Wen W G, Yang X M et al[M]. Metallurgy of zirconium and hafnium, 93(2002).

    [19] Su S J, Cheng B W, Xue C L et al. Lattice constant deviation from Vegard’s law in GeSn alloys[J]. Acta Physica Sinica, 61, 384-388(2012).

    [20] Zhang L, Chen X M, Liu W et al. Formation mechanism and sensitivity of cracks in laser-cladded Ni-based-alloy coatings[J]. Laser & Optoelectronics Progress, 56, 111401(2019).

    [21] Wang W, Sun W L, Yu J T et al. Research status on crack control of laser cladding process coatings[J]. Hot Working Technology, 49, 1-5(2020).

    [22] Li H Y, Wei L F, Wang Z M et al. Effect of preheating temperature on microstructure and stress of laser cladding layer[J]. Laser & Optoelectronics Progress, 58, 0714004(2021).

    [23] Chen J F, Li X P, Xue Y P. Friction and wear properties of laser cladding Fe901 alloy coating on 45 steel surface[J]. Chinese Journal of Lasers, 46, 0502001(2019).

    [24] Kim W Y, Tanaka H, Kasama A et al. Effect of carbon on the tensile properties of Nb-Mo-W alloys at 1773 K[J]. Journal of Alloys and Compounds, 333, 170-178(2002).

    [25] Jin J B, Zhao Y, Zhao S Z et al. Effect of TiN content on microstructure and wear resistance of Ti-based composites produced by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102013(2019).

    [26] Sun N, Fang Y, Zhang J Q et al. Effect of WC-12Co addition on microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J]. Chinese Journal of Lasers, 48, 0602106(2021).

    Shengyuan Lei, Zhimin Cai, Xincheng Jiang, Haili Huang, Yifei Dai, Weizhou Li. Effect of Energy Density on Structure and Properties of a Laser Cladding Molybdenum Layer[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0531001
    Download Citation